
Ready, Set, Building Applications
with GO!

NOV
D E C
2020

Using the .NET
Core Tools
Framework

Building
Geolocation-Enabled
Applications

Getting Started
with ExpressJS
and TypeScript

Geolocation, Vue, .NET Tooling, ExpressJS
co

de
m

ag
.c

om
 -

TH
E

LE
A

D
IN

G
 IN

D
EP

EN
D

EN
T

D
EV

EL
O

PE
R

M
AG

A
ZI

N
E

- U
S

 $
 8

.9
5

 C
an

 $
 1

1.
95

Powered by

SCOTT
GUTHRIE
Executive Vice President,
Cloud + AI Platform,
Microsoft

KATHLEEN
DOLLARD
Principal Program
Manager, Microsoft

CHARLES
LAMANNA
Corporate
Vice President,
Microsoft

SCOTT
HANSELMAN
Principal Program
Manager, Web
Platform, Microsoft

DONOVAN
BROWN
Principal DevOps
Manager, Microsoft

JULIA
LIUSON
Corporate
Vice President,
Microsoft

June 8–10, 2021
Workshops June 6, 7, 11

Orlando, FL
WALT DISNEY WORLD SWAN

Dec 7–9, 2021
Workshops December 5, 6, 10

Las Vegas, NV
MGM GRAND

@DEVintersection
@AzureAIConf

Microsoft and industry experts
Full-day workshops Evening events

DEVintersection.com 203-527-4160 M-F, 12pm-4pm EDT AzureAIConf.com

If your passion is technology, take it to the next level!
Get a unique perspective from industry experts out in the trenches

Have direct interaction with your favorite Microsoft VPs and execs giving you the insider scoop on what’s coming

Find the top speakers sharing real-world solutions and techniques to sharpen your skills for instant ROI

12 pm East • 9 am Pacific

virtual.devintersection.com info@DEVintersection.com (203) 527-4160 M-F, 12–4 Eastern

You’re invited to join Scott Guthrie on December 9
and Charles Lamanna on December 10

as they chat with former CNN anchor, George Howell

DEVintersection Virtual Workshop Event

4-hour Workshops only $199 each 1–5 pm East • 10 am – 2 pm Pacific

DEC 9+10, 2020

Dec 9 Workshops
Advanced .NET, Containers and Azure
Scott Hunter, Brady Gaster, Paul Yuknewicz,
Sourabh Shirhatti, and Maria Naggaga Nakanwagi

Azure Synapse Analytics – The Ultimate Data
Engineering and Data Science Platform – Day 1
Ciprian Jichici, Carey Payette

Become a Better C# Programmer – Leverage
Newer Features
Kathleen Dollard

Building Blazor Applications – Day 1
Carl Franklin

Deep dive into Azure Security – Day 1
Chris Givens

Domain Driven Design Patterns
Steve Smith

Modernize Your ASP.NET Web Forms Application to
.NET Core, Blazor, and the Cloud
Jeff Fritz

Dec 10 Workshops
Power Platform for Pro Devs
Per Mikkelsen, Ryan Cunningham

Azure Synapse Analytics – The Ultimate Data
Engineering and Data Science Platform – Day 2
Ciprian Jichici, Carey Payette

Building ASP.NET Core Apps with
Clean Architecture
Steve Smith

Building Blazor Applications – Day 2
Carl Franklin

Deep dive into Azure Security – Day 2
Chris Givens

Get Your Enterprise Microservices Game on
in Azure
Michele Leroux Bustamante, Jim Counts

Getting Started as a Data Engineer
Tim Chapman

Following the chats, join us at the

DEC 9 A Fireside Chat on trending topics in today’s world,
with Scott Guthrie, Executive VP, Microsoft

Keynotes hosted by George Howell, former
CNN Anchor and international journalist

DEC 10 Accelerating Developers with the
Microsoft Power Platform and live Q&A with
Charles Lamanna, Corporate VP, Microsoft

Register today – complimentary

Sponsors:

www.virtual.devintersection.com
mailto:info@devintersection.com

Powered by

SCOTT
GUTHRIE
Executive Vice President,
Cloud + AI Platform,
Microsoft

KATHLEEN
DOLLARD
Principal Program
Manager, Microsoft

CHARLES
LAMANNA
Corporate
Vice President,
Microsoft

SCOTT
HANSELMAN
Principal Program
Manager, Web
Platform, Microsoft

DONOVAN
BROWN
Principal DevOps
Manager, Microsoft

JULIA
LIUSON
Corporate
Vice President,
Microsoft

June 8–10, 2021
Workshops June 6, 7, 11

Orlando, FL
WALT DISNEY WORLD SWAN

Dec 7–9, 2021
Workshops December 5, 6, 10

Las Vegas, NV
MGM GRAND

@DEVintersection
@AzureAIConf

Microsoft and industry experts
Full-day workshops Evening events

DEVintersection.com 203-527-4160 M-F, 12pm-4pm EDT AzureAIConf.com

If your passion is technology, take it to the next level!
Get a unique perspective from industry experts out in the trenches

Have direct interaction with your favorite Microsoft VPs and execs giving you the insider scoop on what’s coming

Find the top speakers sharing real-world solutions and techniques to sharpen your skills for instant ROI

12 pm East • 9 am Pacific

virtual.devintersection.com info@DEVintersection.com (203) 527-4160 M-F, 12–4 Eastern

You’re invited to join Scott Guthrie on December 9
and Charles Lamanna on December 10

as they chat with former CNN anchor, George Howell

DEVintersection Virtual Workshop Event

4-hour Workshops only $199 each 1–5 pm East • 10 am – 2 pm Pacific

DEC 9+10, 2020

Dec 9 Workshops
Advanced .NET, Containers and Azure
Scott Hunter, Brady Gaster, Paul Yuknewicz,
Sourabh Shirhatti, and Maria Naggaga Nakanwagi

Azure Synapse Analytics – The Ultimate Data
Engineering and Data Science Platform – Day 1
Ciprian Jichici, Carey Payette

Become a Better C# Programmer – Leverage
Newer Features
Kathleen Dollard

Building Blazor Applications – Day 1
Carl Franklin

Deep dive into Azure Security – Day 1
Chris Givens

Domain Driven Design Patterns
Steve Smith

Modernize Your ASP.NET Web Forms Application to
.NET Core, Blazor, and the Cloud
Jeff Fritz

Dec 10 Workshops
Power Platform for Pro Devs
Per Mikkelsen, Ryan Cunningham

Azure Synapse Analytics – The Ultimate Data
Engineering and Data Science Platform – Day 2
Ciprian Jichici, Carey Payette

Building ASP.NET Core Apps with
Clean Architecture
Steve Smith

Building Blazor Applications – Day 2
Carl Franklin

Deep dive into Azure Security – Day 2
Chris Givens

Get Your Enterprise Microservices Game on
in Azure
Michele Leroux Bustamante, Jim Counts

Getting Started as a Data Engineer
Tim Chapman

Following the chats, join us at the

DEC 9 A Fireside Chat on trending topics in today’s world,
with Scott Guthrie, Executive VP, Microsoft

Keynotes hosted by George Howell, former
CNN Anchor and international journalist

DEC 10 Accelerating Developers with the
Microsoft Power Platform and live Q&A with
Charles Lamanna, Corporate VP, Microsoft

Register today – complimentary

Sponsors:

www.devintersection.com
www.azureaiconf.com
https://twitter.com/azureaiconf
https://twitter.com/devintersection

4 codemag.com

TABLE OF CONTENTS

4 Table of Contents

US subscriptions are US $29.99 for one year. Subscriptions outside the US pay $49.99 USD. Payments should be made in US dollars drawn on a US bank. American Express,
MasterCard, Visa, and Discover credit cards are accepted. Bill Me option is available only for US subscriptions. Back issues are available. For subscription information,
send e-mail to subscriptions@codemag.com or contact Customer Service at 832-717-4445 ext. 9.

Subscribe online at www.codemag.com

CODE Component Developer Magazine (ISSN # 1547-5166) is published bimonthly by EPS Software Corporation, 6605 Cypresswood Drive, Suite 425, Spring, TX 77379 U.S.A.
POSTMASTER: Send address changes to CODE Component Developer Magazine, 6605 Cypresswood Drive, Suite 425, Spring, TX 77379 U.S.A.

Features
8 A Simple ExpressJS and

TypeScript Project
Sahil walks you through a simple ExpressJS-based Web app using TypeScript
to help you get started using these great technologies together.
Sahil Malik

14 Using Geolocation and
Google Maps
You want people to be able to find your business, or your house,
or some meeting place without leaving your website to find it
on a map. Using geolocation, the search can be personalized,
and Paul shows you that it’s easier than you’d think.
Paul Sheriff

24 Vue’s Composition API
There’s no sleight of hand here, as Shawn reveals the magic
of Vue’s Composition APIs.
Shawn Wildermuth

30 Introduction to the Go
Programming Language
Although it’s been around for a while, Go is coming into its own as
companies like Google, Dropbox, and Uber adopt it. Wei-Meng shows
you why they’re rushing to use Go and why you should too.
Wei-Meng Lee

42 Using .NET Core Tools
to Create Reusable and
Shareable Tools and Apps
The new .NET Core Tools are a simple way to create, publish,
and consume an existing NuGet infrastructure and share the tools
you build. Rick shows you how.
Rick Strahl

59 Blockchain:
A Practical Application
John’s intrigued by the potential of blockchain, and he takes you
along as he explores this interesting tool.
John Petersen

65 The Complete Guide
to Suspense in Vue3
Suspense is a tool that makes sure your content is ready before displaying
it. Bilal explains this complex concept using example app code.
Bilal Haidar

Columns
54 Talk to an RD:

Dr. Neil Roodyn and Markus Egger
Markus and Neil continue their conversation about the effects of the
COVID-19 pandemic on corporate security.
Markus Egger

74 CODA: What Makes a Leader:
An Objective Analysis
John uses the dictionary to describe what makes a good leader
more than just the boss.
John V. Petersen

Departments
6 Editorial

19 Advertisers Index

73 Code Compilers

www.leadtools.com

6 codemag.comEditorial

The New Normal
Let me fill you in on a little secret: Sometimes the editorials you see here just seem to flow from my
brain, through my fingers, and onto the page. Other times, it’s a real slog just coming up with the
general concept of the editorial, let alone the content. When it came to the editorial for this issue,

EDITORIAL

6

it was the latter rather than the former. It was a
slog. The question came up: How do I get myself
mentally out of the mud and onto a dry road to-
ward an editorial?

My general strategy is to seek out material that
helps me find inspiration either for the concept
or to add material to my already existing theme.
In this case, I was looking for inspiration to sup-
port my already existing theme which, by the
title, you can see is: The New Normal.

I’ve been sitting on this idea for the last few
months and was trying to find the proper words
to start. This is where I got stuck. Generally, I
start my editorials “old-school” by writing them
on paper. If you look at Figure 1, you’ll see that
the start of the editorial had a bunch of crossed
out lines. I was way stuck.

I pulled myself out of the morass by look-
ing for inspiration. I decided to look at
what I wrote for the Nov/Dec 2019 issue.
The Nov/Dec editorial was an interesting
one as I wasn’t the author of that edito-
rial. That editorial was written by my edi-
tor, Melanie Spiller, and is called, “Sock,
Sock, Shoe, Shoe” (https://codemag.com/
Article/1911011/Sock-Sock-Shoe-Shoe).
I loved this editorial, as Melanie wrote
about her experience of taking her normal
morning walk but being forced to reverse
the route as there was construction on her
normal route. What Melanie learned on
this walk was there was a whole universe
of things she never noticed even though
she had walked the same route for years.
Melanie’s perspective had shifted.

This leads me to what I want to convey
in this editorial, a discussion of the “New
Normal.” Like it or not, we’re faced with
a lot of change, some of which may be
permanent. For many of us, our world has
been turned upside down and we’ve been
forced to take a new route. This change in
our world view isn’t because of any man-
made activity this time, but because of
the spread of the COVID-19 virus sweep-
ing the globe. There are so many changes
to our way of life! The primary change is,
of course, that we must now limit contact

with other humans. This is probably the most dif-
ficult of all the changes to our world. I’m a social
being and I bet that many of you are as well. This
limitation has caused a massive ripple effect to
the entire world’s workforce and that’s especially
true of software developers.

As a software developer, I find myself on planes nu-
merous times a year. Over the span of 25 years, I’ve
flown 2,000,000 miles to attend user groups, meet
with clients, or attend/speak at technical conferenc-
es. For me, this component being completely absent
is probably the biggest adjustment. It’s mid-Septem-
ber as I write this, and it’s been a full six months
since my last flight. That’s a new record for me.

That leads me to the next part of the new normal:
virtual technical conferences. The concept of in-
person conferences is out of the question so we

must have our conferences online. This’s a big
shift because it limits one of the best features of
conferences: the hallway talk. Although it’s easy
to give a technical talk online, it’s very difficult
to replicate the hallway aspect of in-person con-
ferences. How are you handling the social aspects
of your technical regimen?

Another consideration is working from home. For
me, this wasn’t a huge adjustment as I’ve been
working at home in one form or another for two
decades. The biggest adjustment for me is that
I now have a high-school-aged child home tak-
ing online virtual classes. I consider myself lucky
not to have an elementary-school-aged child at
home.

Those two areas are just the tip of MY iceberg.
I appreciate the fact that we all have our own

unique challenges difficulties to deal with.
My hope is that once we have better
treatments for COVID-19 and a vaccine to
prevent its spread, we can take away the
good parts of this new normal and build
on them. For instance, if you’ve adapted
to the lifestyle of working at home, you
may want to re-evaluate where you live.
Your choice of where to live might now be
limitless. Or if you want to attend a con-
ference, you may find that some of them
continue to offer online versions and that
you prefer that for a multitude of reasons.
I may attend some at home and some in-
person, once I have the choice.

I’m hopeful that we’ll return to some sem-
blance of normal in the coming months.
It’s yet to be determined what the defini-
tion of normal will be in the coming years
but I, for one, am optimistic that we’ll
end up in a better place than before. That
better place will partially be the result of
taking a new and unexpected direction,
much like Melanie talked about in her
2019 editorial.

 Rod Paddock

Figure 1: Making a few preliminary notes

https://codemag.com/Article/1911011/Sock-Sock-Shoe-Shoe

codemag.com

The future of .NET UI development is hereThe future of .NET UI development is here

Nevron provides advanced solutions for:Nevron provides advanced solutions for:

Learn more at: www.nevron.com todayLearn more at: www.nevron.com today

NEVRON OPEN VISION (NOV)NEVRON OPEN VISION (NOV)

NOV lets you build applications
for Windows, Mac and soon Blazor

using a single codebase.

NOV lets you build applications
for Windows, Mac and soon Blazor

using a single codebase.

The suite features industry-leading components
including Chart, Diagram, Gauge, Grid, Scheduler,

Rich Text Editor, Ribbon, and others.

The suite features industry-leading UI components
including Chart, Diagram, Gauge, Grid, Scheduler,

Rich Text Editor, Ribbon, and others.

G
PU Accelerated

Rendering

C

M

Y

CM

MY

CY

CMY

K

NevronCodeMagNovDec.pdf 1 10/8/2020 12:53:58 PM

www.nevron.com

8 codemag.comA Simple ExpressJS and TypeScript Project

ONLINE QUICK ID 2011021

A Simple ExpressJS and
TypeScript Project
There are days I that consider myself very lucky to be a computer programmer. In the current tumult the world is going
through, I’m lucky to be able to work from home and take my mind off things, things that are often very controversial and
frequently depressing. So let me start this article by saying something completely non-controversial. JavaScript is awesome.

I’m kidding, I’m kidding. In fact, any statement about Ja-
vaScript produces so many strong emotions on either side,
it’s not even funny. Since I started writing this article, there
have been at least five new JavaScript packages or frame-
works released.

A few days ago, a work colleague reached out to me. He hap-
pens to be a .NET programmer—a very good .NET program-
mer. For some crazy reason, he found himself stuck on the
task of building a Web application in NodeJS.

Easier said than done, right? The problem is that in the classic
Microsoft world, so many decisions are made for you. You can
simply create a new .NET Core Web application project and
you’re ready to go. This isn’t the case in the JavaScript world.

There are so many decisions to make. What version of Node-
JS should you use? What node packages should you take a
dependence on? JavaScript is a very flimsy language; can
you take advantage of TypeScript? How do you ensure that
you’re following best practices? Do you want to have a pro-
ductive development experience, like pressing F5 on your
keyboard to run the project? And so on.

This is perhaps the biggest frustration of working with Ja-
vaScript. A simple task, such as setting up a website, has
such a high initial cost and so many ways to get lost in this
process that many developers never get to taste the beauty
of JavaScript. But once you get over the initial gag factor,
the possibilities of JavaScript are endless.

Indeed, JavaScript is awesome, or perhaps this is just my
opinion. I thought I’d write an article in which I can walk
you through the process of setting up a simple ExpressJS-
based Web application that uses TypeScript. In writing this
article, I want to ensure that I eliminate all cruft, things
that might distract you, such as UI, or API, or heavy-duty
frameworks. You can certainly extend what you’re going to
read in this article to more complicated projects. I just want
to give you a simple starter project that lets you get up and
running with ExpressJS and TypeScript.

If you wish to reference the code for this article, you can find
it at https://github.com/maliksahil/expressjs-typescript

Create a Simple NodeJS Project
For the purpose of this article, I assume that you’re somewhat
familiar with NodeJS. I’m not going to spend time explaining
what NodeJS is, or what yarn or npm is. Start by creating a
new folder and initialize a NodeJS project using this command:

npm init -y

Running this command should give you an empty package.json
file. In your package.json file, you’ll have many configuration
values. The three main configuration values I’m concerned
about here are dependencies, devDependencies, and script.

• dependencies are what the project depends on. These
are the node packages that the project is going to
need at runtime. In other words, this is something
you intend to ship.

• devDependencies, on the other hand, are the node
packages that your project depends on, but only at
coding time, not at run time. Although these node
packages are very important to the project, you have
no intention of shipping them in the final version.

• scripts are what you run and scripts can call other
scripts. A typical NodeJS project is comprised of many
scripts. In this case, the scripts will have the respon-
sibility of building the project, cleaning the project,
etc. Let’s get to scripts in a moment, once you have
the basic project structure created.

Let’s start with dependencies. The project is going to be an
ExpressJS application and a TypeScript application, and it
will require, at the bare minimum, two things. It’s going to
need a rendering engine and it’s going to need some con-
figuration, such as what port to run on during debug time.

This is where the curse and blessing of the JavaScript world
shows up. There are so many choices, and there’s not one
single correct answer here. For my purposes, I’m going to use
“ejs” as the rendering engine, and “dotenv” as the configura-
tion helper. I don’t claim that these are the best two choices,
however these are very popular and well-accepted options. I
feel somewhat safe taking a dependency on these node pack-
ages. If ever in doubt, many of these node packages are open
source; you should see how active their communities are, how
often they merge new pull requests, how many people are
involved in the project, how often they respond to the issues,
how many people have starred that particular GitHub reposi-
tory. These are some good baselines that you can use to en-
sure that you’re taking dependency on a node module, that’s
somewhere popular, that the teams behind it are responsive
enough, and that you’ll have a good project lifecycle experi-
ence with that particular node package.

Given this, go ahead and modify the dependencies section
of package.json as shown here:

"dependencies": {
 "ejs": "^3.1.3",
 "express": "^4.17.1",
 "dotenv": "^8.2.0"
},

Sahil Malik
www.winsmarts.com
@sahilmalik

Sahil Malik is a Microsoft
MVP, INETA speaker,
a .NET author, consultant,
and trainer.

Sahil loves interacting with
fellow geeks in real time.
His talks and trainings are
full of humor and practical
nuggets.

His areas of expertise are
cross-platform Mobile app
development, Microsoft
anything, and security
and identity.

https://twitter.com/sahilmalik

9codemag.com A Simple ExpressJS and TypeScript Project

talk about how scripts allows you to work with the project
structure.

Configuration Settings
Before you can start working on your ExpressJS application,
let’s define the environment and the various configuration
details that ExpressJS application depends on.

The first thing you need is an environment file, which in-
cludes the basic configuration settings, such as what port
the application will run on. Because I’ve have taken a de-
pendency on dotnev for this, I simply create a .env file in
the root of the project with the following contents:

SERVER_PORT=8080
HOST_URL=http://localhost:8080

It’s customary to add this .env to your .gitignore and check
in a .env.sample file instead. While I’m at it, here’s my full
.gitignore:

.cache/

.vscode/
dist/
node_modules/
.env
.DS_Store
*.log

Next, let’s talk about devDependencies. I intend to write my
code in TypeScript. Writing code in bare vanilla JavaScript
is simply too flimsy, and experience tells me that no mat-
ter how good I get at JavaScript, I’ll mess it up. TypeScript
encourages me to write cleaner code, allows me to use lan-
guage features that allow me to write easier-to-understand
code that down-compiles to target browsers, and many more
advantages.

In my devDependencies, I intend to take a dependence on
TypeScript. In your devDependencies, add the following
node packages:

"ts-node": "^8.10.2",
"tslint": "^6.1.3",
"TypeScript": "^3.9.7"

But wait; there’s more! This alone isn’t enough. When you
start writing code in TypeScript, you take on two new re-
sponsibilities. TypeScript transpiles into JavaScript, and
that JavaScript is what you finally run. You don’t usually
run TypeScript directly. I say “usually” because sometimes
for some helper files, it may be okay to transpile on the fly
and just run it. For the code you care about, your website,
you’ll always statically transpile this code. You don’t want
to transpile it on the fly, because it’d be just too slow. Your
first responsibility is all the paraphernalia associated with
transpiling.

There’s one more thing you need to worry about. Now that
you’re using TypeScript, TypeScript will enforce some rules
on you. TypeScript wishes to make sure that you’re using the
correct data types, for example. This is a very good thing
because without the appropriate datatypes, you don’t get
the correct IntelliSense. Without the correct IntelliSense,
you’re more prone to making mistakes. Luckily, there are a
number of types node packages that give you all these data
types that you care about. In this project, you’re going to
take a dependency on those as well. Given all this, you can
see the full devDependencies in Listing 1.

Let’s take a moment to understand Listing 1. The various
@types node packages that you see are the type definitions
that the TypeScript transpiler will depend on, and the IDE,
such as VSCode, will depend on to show the correct Intel-
liSense.

The shelljs node package gives you shell-like commands
that you can use in TypeScript. You’ll use this package to
copy transpiled files into a folder from where the Web ap-
plication can be served.

The nodemon node package allows you to restart your ap-
plication if the underlying files change. I’ll use this for de-
bug purposes, the idea being, that as I edit a file, the build
will automatically run and allow me to see changes in the
browser. The npm-run-all allows you to run multiple npm
scripts in parallel, something you’ll have to do when you
build your site. The rimraf allows you to delete a bunch of
files easily and you’ll use this to clean your project. The fi-
nal three, ts-node, tslint, and TypeScript are for TypeScript
support, as I mentioned above.

The final section to talk about is the scripts section. I’m not
ready to talk about that yet. Let’s finish more of the project
first so you have a basic structure in place, and then I’ll

"devDependencies": {
 "@types/dotenv": "^8.2.0",
 "@types/express": "^4.17.7",
 "@types/node": "^14.0.27",
 "@types/shelljs": "0.7.9",
 "shelljs": "0.8.4",
 "nodemon": "^2.0.4",
 "npm-run-all": "^4.1.5",
 "rimraf": "^3.0.2",
 "ts-node": "^8.10.2",
 "tslint": "^6.1.3",
 "TypeScript": "^3.9.7"
},

Listing 1: The devDependencies section of the package.json

{
 "compilerOptions": {
 "module": "commonjs",
 "esModuleInterop": true,
 "target": "es6",
 "noImplicitAny": true,
 "moduleResolution": "node",
 "sourceMap": true,
 "outDir": "dist",
 "baseUrl": ".",
 "paths": {
 "*": [
 "node_modules/*",
 "src/types/*"
]
 }
 },
 "include": [
 "src/**/*"
],
 "exclude": [
 "src/public"
]
}

Listing 2: The tsconfig.json file

10 codemag.com

At this point, go ahead and create these three folders in
your project structure. Your project should look like Figure 1
at this point.

Let’s tackle the easier part first. The dist folder is going to
be empty. It’s just a place holder where my “built” artifacts
will go. Note that I have also specified in my .gitignore file
that the contents of this folder are not to be checked in.

Next, let’s talk about the src folder. This is where my Ex-
pressJS application will go. There are many ways to struc-
ture an ExpressJS app, but I’ve written my application so
that it has a couple of routes, and those couple of routes
are backed by a couple of views. My views are called index
and about, served at “/” and “/about” routes. Both of these
views rely on partial views for the header and footers.

Additionally, I’ve also created a “public” folder, where artifacts
that don’t need transpilation can sit. This could be a third-
party JavaScript library or framework, such as Bootstrap.

At this point, my project structure looks like Figure 2.

This isn’t a tutorial on ExpressJS and you could replace Ex-
pressJS with really any JavaScript framework intended to
serve Web applications here. But, let’s understand at a high
level how the application is built.

You can see my index.ts in Listing 4. In Listing 4, I’m using
ejs as my view engine and I’m rendering views out of the
“views” folder. Additionally, I’m serving static files from the
public folder, and registering routes from the routes folder.
The routes folder serves two routes: index, and about.

The routes.ts file can be seen in Listing 5. I’m using a con-
cept called barreling, where from index.ts, I can simply
import the routes folder. TypeScript looks for a file called
index.ts in a folder called routes and loads everything ac-
cordingly. This makes it really convenient to separate con-
cerns into folders as my application grows.

Finally, my views are rather simple. As can be seen from Fig-
ure 2, I have two views, index and about. These match with
what you see in Listing 5, where I’ve defined my routes.
This could be made dynamic, if you wish. My index.ejs view
looks like Listing 6. I’ll omit the about.ejs view for brevity,
although it’s very similar to index.ejs. Hey, it’s just a simple
Web page that says “About”. You’re welcome to check out
the code in the GitHub repo mentioned above.

The partial views are a reusable snippet of ejs views that
I can embed in any other such view. As an example, the
header.ejs is shown here:

<h1>Header</h1>
Home |
About

Again, you can make this application a lot more complex if
you wish. This is a great start and you can build from here
using this as a template.

Now, let’s focus your attention on the tools folder.

You’re going to need some mechanism to build the applica-
tion during debug time. One part of the build is the Type-

As you can see, this is a very barebones project. I intend to
show you every bit of code I’ll write here.

Next, let’s author the tsconfig.json file. The tsconfig.json
file informs the TypesScript transpiler of the various set-
tings you want it to use. You can see my full tsconfig.json
in Listing 2. As you can see in Listing 2, this is a fairly
simple tsconfig.json. I’m targeting commonjs and excluding
paths I don’t want compiled. Note that I’ve also given a hint
to include node_modules and src/types, without which the
TypeScript transpilation would fail.

Finally, let’s author a tslint.json file. The purpose of the tslint.
json file is to author all of the linting rules. Even though Type-
Script encourages you to write good code, good is only as good
as the team or the developer. Additionally, a lot of things are
opinions or arbitrary decisions. For example, what character
should you use for a quote? Should it be ‘ or “? Both are cor-
rect, but it’s important to pick one and stick with it. You can
specify a lot of rules in tslint.json, but for my purposes, I’ll keep
it simple. You can see my tslint.json in Listing 3.

While we’re at it, add a linting script to your package.json
as well, as follows:

"lint":
 "tslint -c tslint.json -p tsconfig.json"

This script runs the linter and throws an error if your writ-
ten code breaks one of the linting rules. Imagine if I were
debugging and writing code in parallel, if any time I wrote
poor code, as long as the linter runs inline of my build
process, I’ll be alerted immediately. I’ll show later in this
article how you can integrate this REPL pipeline. You can
also integrate this as a part of your check-in/branch merge
rules, but I won’t be covering that in this article.

Write Your Application
So far, you have your configuration settings and your pack-
age dependencies done. You also added one linting script.
Now, let’s focus on the main project structure. Again, Node-
JS is not very opinionated; you can make this as clean or as
messy as you’d like. As I think about creating this project
structure, I have three main things I’d like to achieve.

• I’d like a src folder where my source code lives. This is
where I write my ExpressJS application in TypeScript.

• I’d like a dist folder, where the built version of this
application will live. This is what will eventually run.

• I’d like a tools folder, where I will have helper scripts to
facilitate the build process or anything else I might need.

{
 "defaultSeverity": "error",
 "extends": [
 "tslint:recommended"
],
 "jsRules": {},
 "rules": {
 "indent": [true, "spaces"],
 "trailing-comma": [false]
 },
 "rulesDirectory": []
}

Listing 3: My tslint.json

Figure 1: Our basic project
structure

Figure 2: Full project
structure

A Simple ExpressJS and TypeScript Project

11codemag.com

Script transpilation, but the second part is copying over
the static assets, such as CSS, JavaScript, images, etc.,
that don’t need transpilation. You’re going to put all of
those in the public folder. These files need to be copied
from the src folder and be copied into the dist folder at
runtime. To facilitate that, go ahead and create a file called
copyAssets.ts in the tools folder. You can find the code for
copyAssets.ts in Listing 7. As you can see from Listing 7,
I’m simply cleaning up and copying files as the application
runs.

Run and Build Your Application
Now that the application is done, it’s time to stitch all of
this together and make it work during debug time. Deploy-
ing into production is a whole other topic, and there are
many ways to do that as well. For example, you could eas-
ily convert the dist folder into a Docker image. I hope to
talk more about deployment and other concerns in future
articles. For now, let’s get the application working in debug
mode.

To begin, add a “main” entry in the package.json, as shown:

"main": "dist/index.js",

This informs the host that when this project is asked to
run, you should run the dist/index.js file. For instance, if
you press F5 in VSCode, this file will run. Of course, this file
doesn’t yet exist; it has to be built. I’ll get there in a mo-
ment. For now, in your scripts tag, add another script to run
this main entry point:

"dev": "node .",

Now, let’s add a few helper scripts in the scripts section of
the package.json. You’ll use these helper scripts as building
blocks to facilitate the debugging experience. These can be
seen here:

"copy-assets": "ts-node tools/copyAssets",
"tsc": "tsc",
"clean": "rimraf dist/*",
"lint":
 "tslint -c tslint.json -p tsconfig.json"

The copy-assets script runs the copyAssets.ts file using the
ts-node package. If you remember, this file copies the static
content that the site depends on and puts it in the dist
folder. The tsc script represents the TypeScript transpiler.

The clean script is used to delete older files. The idea is that
as I change code, I want my application to be automatically
rebuilt and recopied. Before it’s recopied, I want older ap-
plications to be deleted. That’s what I’m using rimraf and
clean for.

And the lint script, as I have already described in this arti-
cle, is linting the code to ensure that I’m writing clean code.

So, what would the build look like? Simple: clean, lint, run
the TypeScript transpiler to generate files and then run co-
py-assets. Go ahead and add a build script as below.

"build":
 "npm-run-all clean lint tsc copy-assets",

import dotenv from "dotenv";
import express from "express";
import path from "path";
import * as routes from "./routes";

dotenv.config();

const port = process.env.SERVER_PORT;
const app = express();

app.use(express.json());

app.set("views", path.join(__dirname, "views"));
app.set("view engine", "ejs");

app.use(express.static(path.join(__dirname, "public")));

// Configure routes
routes.register(app);

// start the express server
app.listen(port, () => {
 // tslint:disable-next-line:no-console
 console.log(
 `server started at http://localhost:${port}`);
});

Listing 4: My index.ts

import * as express from "express";

export const register = (app: express.Application)
 => {
 // home page
 app.get("/", (req: any, res) => {
 res.render("index");
 });

 // about page
 app.get("/about", (req: any, res) => {
 res.render("about");
 });
};

Listing 5: The routes.ts file

<!doctype html>

<html lang="en">

<head>
 <meta charset="utf-8">
 <title>ExpressJS TypeScript starter template</title>
</head>

<body>
 <%- include('partials/header') %>
 <h1>Home Page</h1>
 <%- include('partials/footer') %>
</body>

</html>

Listing 6: Index.ejs

import * as shell from "shelljs";

// Copy all the view templates and assets in the public folder
shell.cp("-R", ["src/views", "src/public"], "dist/");

// Remove unnecessary files
shell.rm(["dist/public/js/*.ts", "dist/public/js/*.json"]);

Listing 7: copyAssets.ts

A Simple ExpressJS and TypeScript Project

12 codemag.com

This finishes the “script” section for the project. You can find
the full script section in Listing 8.

Run Your Application
Now for the most fun part. To run the application, type the
following command at terminal:

npm start

Sure, it’s possible to wire up VSCode, so pressing F5 will do
this for you. But let’s, for now, run it from commandline and
get started. Once your application is built and deployed,
you should see the following in your console:

server started at http://localhost:8080

Now open your favorite browser and visit http://local-
host:8080. Your application can be seen running in Figure 3.

This looks great, but the header and footer are HUGE. Let’s
make them smaller. As the application is running, edit the
src\public\views\partials\header.ejs and footer.ejs files,
and change the h1 tag to h4. You’ll notice that soon as you
save the file, the application rebuilds automatically. Now
visit your browser and press F5 to see the changes.

You have a nice REPL (read-eval-print-loop)-based develop-
ment environment set up.

Summary
In this article, I showed you every bit, corner, and nuance of
writing an ExpressJS and TypeScript-based project. Let me
just say this: As technology is moving forward very fast, the
one thing that suffers is documentation. All of these tech-
nologies are amazing, and once you master them all, you
are incredibly productive. The issue, of course, is mastering
them, because no single article walks you through the very
basics, no single article shows you every single step you
need to take to get a basic application running.

This can be incredibly frustrating for beginners. And let’s
be honest. In our industry, all of us are always beginners.

There’s plenty more that can be added into this project,
of course. For example, can I build a compelling user in-
terface using Bootstrap? Can I add authentication? Can I
add something like a browser link, so when my application
rebuilds, I don’t have to manually press F5 in development
mode? How do I deploy this application? Can I easily con-
vert this into a Docker image? And when I convert this
into a Docker image, what if the node process crashes in
the Docker image? How do I gracefully recover from that?
Can I use something like Kubernetes to automatically
check the health of my code, and recover gracefully? How
do I add APIs into my project? And so much more. All of
these concerns are what you will deal with in a real-life
project.

I hope to talk about these and many more things while en-
hancing this project template in my future articles. Until
then, happy coding.

Now you can build. What’s next? Let’s build and run! You al-
ready have a script entry called “dev” that runs the project.
Now you need to run build and dev together. Here’s how
you do it:

"dev:start": "npm-run-all build dev",

At this point, if I were to write npm run dev:start, my ap-
plication will build and run. But that’s not enough! What
I really want is for my application to automatically build,
rebuild, deploy, and run as I edit code. To facilitate that,
add the “start” command as below.

"start":
"nodemon --watch src -e
 ts,ejs --exec npm run dev:start",

"scripts": {
 "start":
 "nodemon --watch src -e
 ts,ejs --exec npm run dev:start",
 "dev": "node .",
 "dev:start": "npm-run-all build dev",
 "build": "npm-run-all clean lint tsc copy-assets",
 "copy-assets": "ts-node tools/copyAssets",
 "tsc": "tsc",
 "clean": "rimraf dist/*",
 "lint": "tslint -c tslint.json -p tsconfig.json"
},

Listing 8: The script section

Figure 3: Your application is running.

Figure 4: Your application reflects changes immediately.

 Sahil Malik

SPONSORED SIDEBAR:

Interested in Moving
to Azure?
CODE Can Help!

Take advantage of a
FREE hour-long CODE
Consulting session
(yes, FREE!) to jumpstart
your organization’s plans
to develop solutions on the
Microsoft Azure platform.
For more information,
visit www.codemag.com/
consulting or email us
at info@codemag.com.

A Simple ExpressJS and TypeScript Project

http://localhost:8080

13Title articlecodemag.com

Are you being held back by a legacy application that needs to be modernized? We can help.

We specialize in converting legacy applications to modern technologies. Whether your application

is currently written in Visual Basic, FoxPro, Access, ASP Classic, .NET 1.0, PHP, Delphi…

or something else, we can help.

codemag.com/legacy
832-717-4445 ext. 9 • info@codemag.com

OLD
TECH HOLDING
YOU BACK?

www.codemag.com/legacy
mailto:info@codemag.com

14 codemag.comUsing Geolocation and Google Maps

ONLINE QUICK ID 2011031

Using Geolocation and Google Maps
As many users browse websites on their mobile phones, you might need the ability to guide the user from their current location
to your location. This is easily accomplished using the browser’s built-in navigator.geolocation object and Google Maps.
The geolocation object provides the latitude and longitude of the user’s phone or desktop. You can embed a Google map on

your Web page and show the user their location based on
that latitude and longitude. Additional API calls to Google’s
mapping API can give the user step-by-step directions to
your location. This article shows you how to get started us-
ing these two powerful APIs.

Create HTML to Display Location
Information
To begin, build a simple HTML page to display the various
properties of the geolocation object. Feel free to use your
tool(s) of choice to build an HTML page named index.html
and a Web project. You can use Node.js/Express, MVC, Web
Forms, etc. All you need is a Web server to run the HTML
page and a CDN reference to jQuery. After creating your Web
project and the index.html page, open the index.html file
and add the code shown in Listing 1 into this file.

Styles
The index.html file references a stylesheet named site.css.
In this file is where you place some CSS rules to set some
margins, padding, and some color. Add a file named site.css
in a styles folder (add this folder if needed) and place the
code shown below into this file.

header, main { padding-left: 2em; }

.alert {
 margin-top: 1em;
 margin-bottom: 1em;
 padding: 1em;
 background-color: red;
 color: white;
}

.d-none { display: none; }

Get Latitude and Longitude
When using the geolocation object, the first thing you
should do is check to ensure that the user’s browser sup-
ports the object. After your page loads, check to see if
something other than a null or undefined is returned when
you check the navigator.geolocation property. If a geoloca-
tion object is returned, you can call the getCurrentPosition()
method on that object and pass in the name of a function
to call once the current location has been determined. If a
geolocation object isn’t returned, call a function to display
an error message. Add the code shown below within the
$(document).ready() function.

$(document).ready(function () {
 if (navigator.geolocation) {
 navigator.geolocation.
 getCurrentPosition(displayPosition);
 }
 else {

 displayError("Please update your browser
 to use Geolocation.");
 }
});

Display Latitude and Longitude
The getCurrentPosition() method asks the user’s permission
to retrieve their location. The browser prompts the user to
answer with an “OK or “Yes” if they will allow the getCur-
rentPosition() method to retrieve their current location. If
the user answers in the affirmative, the user’s location is
retrieved, and the data is placed into a Coordinates object.
This Coordinates object is passed to the callback function
you passed into the getCurrentPosition() method. Within
the displayPosition() function is where you extract the lati-
tude, longitude, and other properties. Add the following
code within the displayPosition() function.

function displayPosition(pos) {
 let coords = pos.coords;

 $("#timestamp").text(new Date(pos.timestamp));
 $("#lat").text(coords.latitude);
 $("#long").text(coords.longitude);
 $("#accuracy").text(coords.accuracy);
 $("#altitude").text(coords.altitude ?? "n/a");
 $("#altitudeaccuracy").
 text(coords.altitudeAccuracy ?? "n/a");
 $("#heading").text(coords.heading ?? "n/a");
 $("#speed").text(coords.speed ?? "n/a");
}

Try It Out
Save the changes to all your files and run your Web proj-
ect. Your browser prompts you that this Web page is asking
to know your location. There will be two options: to allow
this page to access the geolocation coordinates or decline
access. For now, go ahead and allow access to see your lati-
tude, longitude, and other properties. You should see data
appear like the data shown in Figure 1.

Paul D. Sheriff
psheriff@pdsa.com
http://www.pdsa.com

Paul has been in the IT
industry over 33 years.
In that time, he has suc-
cessfully assisted hundreds
of companies architect
software applications
to solve their toughest
business problems.
Paul has been a teacher
and mentor through
various mediums such
as video courses, blogs,
articles, and speaking
engagements at user
groups and conferences
around the world.
Paul has 26 courses in
the www.pluralsight.com
library (http://www.plu-
ralsight.com/author/paul-
sheriff) on topics ranging
from JavaScript, Angular,
MVC, WPF, XML, jQuery,
and Bootstrap.

Figure 1: Display Latitude, Longitude, and Accuracy

http://www.pluralsight.com/author/paulsheriff

15codemag.com Using Geolocation and Google Maps

 displayPosition, handleError);
}

Try It Out
Run the page again, but this time when the browser prompts
you to use geolocation, answer in the negative. You should
now be presented with a page that looks like Figure 2.

Geolocation Options
There’s a third parameter you may pass to the getCurrent-
Position() method. This third parameter is an optional

Add Error Handling
You should not assume that the geolocation object will al-
ways work. There are a few things that can go wrong: the
user may not allow access to the geolocation object, the
call to getCurrentPosition() may timeout, the current user’s
location may not be able to be determined, and other errors
may occur. In case an error does occur, make sure to set up
an error message to display on the page.

In the index.html page you created, there is a <div
id=”errorArea”> where you place any error messages. This
<div> has a style of “alert,” which displays error messages
with a red background and white letters. The style of “d-
none” is also in the class attribute. This hides the <div>
until you’re ready to display an error message. Add the fol-
lowing code in the displayError() function.

function displayError(msg) {
 $("#errorArea").removeClass("d-none");
 $("#errorArea").html(msg);
}

Handle Location Errors
The second parameter you may pass to the getCurrentPosi-
tion() method is a callback function to handle any errors
that may occur in that method. Add the code shown in List-
ing 2 to the handleError() function stub you created earlier.

Pass in the name of the handleError() function as the second
parameter in the call to the getCurrentPosition() method.

if (navigator.geolocation) {
 navigator.geolocation.getCurrentPosition(

<!DOCTYPE html>
<html>

<head>
 <meta charset="utf-8" />

 <title>Get Latitude/Longitude</title>

 <link href="styles/site.css" rel="stylesheet" />
</head>

<body>
 <header>
 <h1>Get Latitude/Longitude</h1>
 </header>

 <main>
 <p>Timestamp:

 </p>
 <p>Latitude:

 </p>
 <p>Longitude:

 </p>
 <p>Lat/Long Accuracy (meters):

 </p>
 <p>Altitude (meters above sea level):

 </p>
 <p>Altitude Accuracy (meters):

 </p>

 <p>Heading (Degress from true north):

 </p>
 <p>Speed (meters/second):

 </p>

 <div id="errorArea"
 class="alert d-none">
 </div>
 </main>

 <script src="https://code.jquery.com/
 jquery-3.5.1.min.js"
 integrity="REMOVED FOR BREVITY"
 crossorigin="anonymous">
 </script>
 <script>
 'use strict';

 $(document).ready(function () {
 }

 function displayPosition(pos) {
 }

 function handleError(error) {
 }

 function displayError(msg) {
 }
 </script>
</body>

</html>

Listing 1: Create an HTML page to display the geolocation coordinate information.

function handleError(error) {
 let msg = "";

 console.log("error.message = " + error.message);
 switch (error.code) {
 case error.PERMISSION_DENIED:
 msg = "User does not want to display location.";
 break;
 case error.POSITION_UNAVAILABLE:
 msg = "Can't determine user's location.";
 break;
 case error.TIMEOUT:
 msg = "The request for geolocation info timed out.";
 break;
 case error.UNKNOWN_ERROR:
 msg = "An unknown error occurred.";
 break;
 }

 displayError(msg);
}

Listing 2: Handle location errors by displaying a specific error message.

16 codemag.com

Property Description
enableHighAccuracy If set to true, informs the device to attempt to obtain a more accurate

position. This can slow down the time it takes to retrieve the coordinates.

timeout The maximum length of time to wait before throwing an exception.
This value is expressed in milliseconds.

maximumAge The maximum age of the last cached position that’s acceptable to return.
This value is expressed in milliseconds. Set to 0 to not allow the device
to cache positions.

Table 1: You may set any or none of the PositionOptions. Figure 2: Create an error area to display error messages

'use strict';

let geoController = (function () {
 // *****************************
 // Private Variables
 // *****************************
 let position = null;
 let lastMessage = null;
 let lastError = null;
 let successCallback = null;
 let errorCallback = null;

 // Enable high accuracy, if available
 // Timeout after 10 seconds
 // Only cached positions where age < 5 minutes
 let options = {
 enableHighAccuracy: true,
 timeout: 10000,
 maximumAge: 300000
 };

 // *****************************
 // Private Functions
 // *****************************
 function getCurrentPosition(success, error, posOptions) {
 // Set callbacks
 successCallback = success;
 errorCallback = error;
 if (posOptions) {
 options = posOptions;
 }

 // Reset private variables
 position = null;
 lastError = null;
 lastMessage = null;

 if (navigator.geolocation) {
 navigator.geolocation.getCurrentPosition(
 setPosition, handleError, options);
 }
 else {
 callError("Update your browser to use Geolocation.");
 }
 }

 function setPosition(pos) {
 position = pos;

 if (successCallback) {
 successCallback(position);
 }
 }

 function handleError(error) {
 lastError = error;

 switch (error.code) {
 case error.PERMISSION_DENIED:
 lastMessage = "User does not want
 to display their location."
 break;
 case error.POSITION_UNAVAILABLE:
 lastMessage = "Can't determine
 user's location."
 break;
 case error.TIMEOUT:
 lastMessage = "The request for
 geolocation information timed out."
 break;
 case error.UNKNOWN_ERROR:
 lastMessage = "An unknown error occurred."
 break;
 }

 callError(lastMessage);
 }

 function callError(msg) {
 lastMessage = msg;

 console.log(msg);

 if (errorCallback) {
 errorCallback(lastMessage);
 }
 }

 // *****************************
 // Public Functions
 // *****************************
 return {
 "getCurrentPosition": function (success,
 error, posOptions) {
 getCurrentPosition(success, error,
 posOptions);
 },
 "getPosition": function () {
 return position;
 },
 "getLastError": function () {
 return lastError;
 },
 "getLastMessage": function () {
 return lastMessage;
 },
 "getOptions": function () {
 return options;
 }
 }
})();

Listing 3: Handle location errors by displaying a specific error message.

PositionOptions literal object. This object contains three
properties and you may set one, two, or all three of them.
One thing to note: these options are only applied if you’re
running in HTTPS mode in your browser. The properties and
their meanings are listed in Table 1.

Using Geolocation and Google Maps

17codemag.com

Street Maps, you can redirect to their Web pages and pass in
the coordinates. You can do this for free. Using Google Maps
or Bing Maps, you also have the choice of paying for their
service and having a map embedded right into your own Web
page. Let’s take a look at the free option first. Open the in-
dex.html page and add a button within the <main> element.

<button onclick="displayOnMap();">
 Display on Map
</button>

Add a function within the <script> tags named displayOn-
Map() as shown in the code below.

function displayOnMap() {
 let coords = geoController

To use these options, add a new variable named options,
and set it equal to a literal object you see in the code in
bold below. Pass this object as the third parameter to the
getCurrentPosition() method.

if (navigator.geolocation) {
 let options = {
 enableHighAccuracy: true,
 timeout: 10000,
 maximumAge: 300000
 };

 navigator.geolocation.getCurrentPosition(
 displayPosition, handleError, options);
}

Create a Geolocation Closure
The code shown so far is fine for this page but requires you
to copy and paste the code and make significant changes
if you want to use this code on multiple Web pages. To
make the geolocation code more reusable, wrap it into a
closure and place that closure in a JavaScript file. Create a
file named geoController.js in a scripts folder (create this
folder if needed) and add the code shown in Listing 3.

The basics of this closure are created using an Immediately
Invoked Function Expression, more commonly called an IIFE.
This IIFE starts with the second line in the file and ends with
the last line of the file. In between are some private vari-
ables, private functions, and a literal object returned from
this IIFE to identify the public functions to be called from
the geoController variable, as shown in Listing 4.

The only private function that’s exposed as a public func-
tion is getCurrentPosition(). The rest of the functions al-
low you to retrieve values set in the private variables such
as the position object, the last error object, the last error
message, and the position option object. The getCurrent-
Position() function has the same signature as the getCur-
rentPosition() method on the geolocation object to make it
easy to understand. The two callbacks are setPosition() and
handleError() within this closure. This allows you to set the
private variables from these two functions before calling the
success or error callbacks you pass in.

Notice that in the closure, there’s no code that affects the
UI. All this function does is set data. You can then call any
of the public functions to retrieve the data and use that to
set the UI on your specific page. Open the index.html page
and change the code at the bottom of the file to look like
Listing 5.

In the code in Listing 5, you see the call to the geoCon-
troller.getCurrentPosition() function. Pass in two function
names on this page as the callbacks to be used to set the
position data into the page, and to display an error mes-
sage. You now have a nice separation of concerns as far as
code that gathers data and code that displays data.

Pass Coordinates to Google Maps
Once you have the latitude and longitude from the geoloca-
tion object, you have a variety of options on how to display
those coordinates. There are free and paid services you can
use. For example, with Google Maps, Bing Maps, or Open

let geoController = (function () {
 // Private variables here

 // The following are private functions
 function getCurrentPosition(success,
 error, posOptions) {
 }

 function setPosition(pos) {
 }

 function handleError(error) {
 }

 function callError(msg) {
 }

 return {
 // Public functions here
 }
})();

Listing 4: The structure of your closures should follow this format.

<script src="scripts/geoController.js"
 type="text/javascript">
</script>
<script>
 'use strict';

 $(document).ready(function () {
 geoController.getCurrentPosition(
 displayPosition, displayError);
 });

 function displayPosition(pos) {
 let coords = pos.coords;
 $("#timestamp").text(new Date(pos.timestamp));
 $("#lat").text(coords.latitude);
 $("#long").text(coords.longitude);
 $("#accuracy").text(coords.accuracy);
 $("#altitude").text(coords.altitude ?? "n/a");
 $("#altitudeaccuracy")
 .text(coords.altitudeAccuracy ?? "n/a");
 $("#heading").text(coords.heading ?? "n/a");
 $("#speed").text(coords.speed ?? "n/a");
 }

 function displayError(msg) {
 $("#errorArea").removeClass("d-none");
 $("#errorArea").html(msg);
 }
</script>

Listing 5: Call the closure to set data, then make a call back to your page to affect the UI.

Using Geolocation and Google Maps

18 codemag.com

Embed a Google Map
Simplify the <main> element by removing most of the <p>
and elements except the ones used to display lati-
tude and longitude. Add a new <div> element just above
the <div id=”errorArea”> and add id and class attributes
to the new <div> element, as shown in the code snippet
below.

<main>
 <p>Latitude: </p>
 <p>Longitude: </p>

 <div id="map" class="mapArea"></div>

 <div id="errorArea" class="alert d-none">
 </div>
</main>

Open the styles\site.css file and add a new CSS rule for the
mapArea class. Add the CSS rule shown below to set the width
and height of the <div> where the map is to be embedded.

.mapArea {
 width: 90%;
 height: 500px;
}

Fix the Script Code
Remove the $(document).ready() function and replace it
with a function named initialize().

function initialize() {
 geoController.getCurrentPosition(
 displayPosition, displayError);
};

Locate the displayPosition() function and remove the code
that set the elements you removed from the HTML. Also,
make a call to a new function named addMap().

function displayPosition(pos) {
 let coords = pos.coords;
 $("#lat").text(coords.latitude);
 $("#long").text(coords.longitude);

 addMap(coords);
}

Add a new function named addMap() just below the display-
Position() function. This method looks like the following:

 .getPosition().coords;

 window.location.href =
 `https://google.com/maps?
 q=${coords.latitude},
 ${coords.longitude}`;
}

This code retrieves the GeoLocationPosition object by call-
ing the getPosition() method in your closure. It then ex-
tracts the coords property and puts it into a local variable
named coords. Pass in the latitude and longitude on the
URL line in a format that looks like the following:

https://google.com/maps?q=36.084391,-86.773550

The code in displayOnMap() sets the window.location.href
property using a template string to embed the latitude and
longitude retrieved from the coords variable. Once the href
property is set, your browser redirects to Google Maps and
displays a marker at those coordinates, as shown in Figure 3.

Of course, the problem with this approach is that you must
leave your site and go to the Google Maps site. A better
approach is to embed a Google Map within your Web page.
The next part of this article covers how to accomplish this.

function addDirections(from, to) {
 let service =
 new google.maps.DirectionsService();
 let renderer =
 new google.maps.DirectionsRenderer();

 // Set route of how to travel
 // from point A to B
 service.route(
 {
 origin: from,
 destination: to,
 travelMode: 'DRIVING'

 },
 function (response, status) {
 if (status === 'OK') {
 renderer.setDirections(response);
 // Render directions on the map
 renderer.setMap(map);
 } else {
 console.log(
 'Directions request failed due to '
 + status);
 }
 });
}

Listing 6: Use the DirectionsService and DirectionsRenderer classes to get directions between two points.

Figure 3: Google Maps can display any latitude and longitude through the URL.

Using Geolocation and Google Maps

19codemag.com

<script
 src="https://maps.googleapis.com/
 maps/api/js?key=YOUR_KEY_HERE
 &callback=gmapController.initialize"
 type="text/javascript">
</script>

In the above code, you need to add a developer API key,
which is covered in the next section of this article. The
“callback=gmapController.initialize” is passed into the
Google JavaScript and tells the API that after it has loaded
all its code, it should call the initialize() function within the
closure on this page. This’s how you get your map embedded
on your page.

Get a Google API Key
Before you can embed a Google map, you must sign up with
Google to get an API key at https://tinyurl.com/y5reu2l2.
Be sure to read the instructions on this page carefully, as
you should turn on various API services based on what you
wish to use. In addition, you should also restrict the usage
of your API key to only a few applications. You might also
want to set daily or monthly limits on the amount that can
be spent to ensure that you don’t blow out your budget.

Although it doesn’t cost anything to obtain a Google API
key, you must enter a credit card. At the time of this writing,
you get $200 per month of their various mapping APIs free.
This amount should be more than enough to get your maps
working within your website.

function addMap(location) {
 // Create a lat/lng object
 let pos = new google.maps.LatLng(
 location.latitude, location.longitude);
 // Create map options
 let mapOptions = {
 center: pos,
 zoom: 16,
 mapTypeId: google.maps.MapTypeId.ROADMAP
 };
 // Create new google map
 let map = new google.maps.Map(
 document.getElementById("map"),
 mapOptions);
}

The addMap() function builds a new LatLng object by
passing in the latitude and longitude properties from the
geolocation coordinates retrieved from the call to getCur-
rentPosition(). Next, create a map options object with the
properties center, zoom and mapTypeId. Set the center
property to the LatLng object so the map knows where to
put the coordinates on the map. Set the zoom property to
16 so the API can show just a certain portion of the map.
You might want to play with this property to get make it
look the way you want. The mapTypeId property is a con-
stant that tells the type of map to display. Valid values
are roadmap, satellite, hybrid, or terrain. The last piece of
code is to create a Map object by passing in the HTML ob-
ject where you wish to embed the map and the map options
object.

Create a Closure for Mapping
Just like you created a closure for working with geolocation,
I recommend that you use a closure on each HTML page as
well. Immediately after the ‘use strict’, add the code shown
below.

<script>
 'use strict';

 var gmapController = (function () {

 return {
 "initialize": initialize
 }
 })();

 // Rest of the code here
</script>

Take all of the functions that were there before and move
them within the closure you just created. By moving all of
the code within the function, each of those functions be-
comes private within the gmapController function. The only
function that needs to be made public from the closure is
the initialize() function, so that’s the one you add to the
literal object returned from the closure.

Call the Initialize Method
Because you removed the $(document).ready() function
and moved all of the code within a closure, how does the
map get displayed? There’s one more piece to this puzzle
that you add to your page. Put the following <script> tag
immediately after the ending </script> tag where your code
is located.

Advertisers Index

CODE Consulting
 www.codemag.com/consulting 41

CODE Legacy
 www.codemag.com/legacy 13

CODE Magazine
 www.codemag.com/subscribe 75

DevIntersection
 www.devintersection.com 2

dtSearch
 www.dtSearch.com 29

Fortellis
 www.fortellis.io 76

LEAD Technologies
 www.leadtools.com 5

Nevron Software, LLC
 www.nevron.com 7

ADVERTISERS INDEX

Advertising Sales:
Tammy Ferguson
832-717-4445 ext 26
tammy@codemag.com

This listing is provided as a courtesy
to our readers and advertisers.
The publisher assumes no responsibi-
lity for errors or omissions.

Using Geolocation and Google Maps

20 codemag.com

 // Add marker for location
 addMarker(location);
}

Add an addMarker() function within the closure to create and
add the marker at the coordinates in your location variable.

function addMarker(location) {
 // Create a new marker
 location.marker = new google.maps.Marker({
 position: new google.maps.LatLng(
 location.latitude, location.longitude),
 map: map,
 title: location.title
 });

 // Add marker to the map
 location.marker.setMap(map);
}

Try It Out
Save all your changes and run the page again. You should
now see a marker on the embedded map. If you hover over
the marker, you should see the value from the title property
in your location property.

Add Multiple Locations
You may add as many markers as you want on your Google
Map. You just need separate coordinates for each marker.
Now you see the reason for creating a location literal ob-
ject; it contains a property for each piece of data for each
marker you wish to place on the map. Remove the private
variable location you created earlier and replace it with an
array named locations.

let locations = [];

Create a new function within the closure named createLoca-
tions() in which you push as many different literal objects
into the locations array as you want to display on the map.

function createLocations() {
 locations.push({
 "latitude": 36.036020,
 "longitude": -86.787600,
 "title": "Paul's Training Company",
 "marker": null
 });
 locations.push({
 "latitude": 36.0339689,
 "longitude": -86.8058154,
 "title": "Mere Bulles",
 "marker": null
 });
}

You need to call this new function from the initialize() func-
tion, then loop through each item in the locations array
and pass each item to the addMarker() method. Modify the
initialize() function to look like the following.

function initialize() {
 // Create array of map definitions
 createLocations();

Try It Out
Once you create your Google API key, substitute your key
for the “YOUR_KEY_HERE” string included in the <script>
tag from the last section. Run your page and if you’ve done
everything correctly, you should see a map appear with your
current location in the center of the map. If you don’t see
the map appear, check the browser’s console window for any
error messages that could guide you on how to fix the error.

Add a Marker on a Location
A popular item you want on a map is a large marker (see
Figure 4) to denote the location you’re trying to point out
to the user. Google Maps makes it easy to add a marker on
your map.

Instead of using your location to position the embedded
Google Map, let’s set up a fictitious company named “Paul’s
Training Company” located in Brentwood, TN, USA. Add two
private variables within the closure.

let map = null;

let location = {
 "latitude": 36.036020,
 "longitude": -86.787600,
 "title": "Paul's Training Company",
 "marker": null
};

The map property is going to hold a reference to the Google
Map object. The location property is a literal object with
the latitude, longitude, and the title of the location. The
marker property is currently set to null but is going to be
set by code you write very soon.

Because you’re not using the call to the geolocation ob-
ject to get the coordinates, just call the addMap() function
passing in the location variable. Modify the initialize()
function in your closure to look like the following code
snippet.

function initialize() {
 // Draw the map
 addMap(location);

Figure 4: A marker helps identify your location on the map

Using Geolocation and Google Maps

21codemag.com

for (let index = 0; index <
 locations.length; index++) {
 // Add marker for location
 addMarker(locations[index]);

 // Extend boundaries to encompass marker
 bounds.extend(
 locations[index].marker.position);
}

After drawing all of the locations in the loop, call the fit-
Bounds() method on the map passing in the LatLngBounds
object. Add the following code immediately after the loop in
the initialize() function.

// Fit the map to boundaries
if (locations.length > 1) {
 map.fitBounds(bounds);
}

Try It Out
Save your changes and run the page again. Now, the map
should resize to the appropriate width to show you both
locations you added.

Directions Between Two Points
Besides just showing markers on your map, you might want
to provide your user with the ability to drive to your location
from where they are. Google Maps provides the Directions-
Service and the DirectionsRenderer classes to connect two
points with a blue line, as shown in Figure 5.

Add a new function to your closure named addDirections().
This function creates an instance of a google.maps.Di-
rectionsService class and an instance of google.maps.
DirectionsRenderer class. Call the route() method on the
DirectionsService class, passing in a literal object with the

 // Draw the map
 addMap(locations[0]);

 // Draw the locations
 for (let index = 0; index <
 locations.length; index++) {
 // Add marker for location
 addMarker(locations[index]);
 }
}

Try It Out
Save your changes and try out this new code. You may have
to scroll to the left to see the other marker depending on
the size of your browser window. In the next section, you
learn how to ensure the user can see all of your locations
without having to scroll.

Center All Locations on Map
You shouldn’t force your user to scroll to see all the loca-
tions you placed on your map. It would be nice if you could
figure out the farthest latitude and longitudes to the north/
south and east/west and somehow tell the map to automati-
cally include these farthest points. Google Maps provides
this in a LatLngBounds class. Create a LatLngBounds class
as the first line of code in the initialize() function.

function initialize() {
 // Create a lat/lng boundary
 let bounds = new google.maps.LatLngBounds();

 // Rest of the code
}

A LatLngBounds class has an extend() method to which you
pass in a LatLng class. The LatLng class contains two proper-
ties lat and lng. Your addMarker() function creates a LatLng
object from the latitude and longitude in your map definition
object. Call the extend() method after calling the addMark-
er() function within the loop in the initialize() function.

Figure 5: Google Maps can add a line showing how to
travel from point A to point B.

Figure 6: Google Maps can add directions in text format
between two points.

Using Geolocation and Google Maps

22 codemag.com

Information Windows
In Figure 7, you see a rectangular window above the marker
with address information for the restaurant. This is called
an information window and is accessed by the user clicking
on the marker. It can be dismissed using the “x” in the up-
per right corner of the window.

There are just a few steps needed to add an information
window to a marker. Create a variable, named infoWindow,
in your closure and assign a null value to it for right now.

let infoWindow = null;

In the initialize() create a new instance a google.maps.In-
foWindow class and assign it to the infoWindow variable.

function initialize() {
 // Create new InfoWindow if it is not already
 if (infoWindow == null) {
 infoWindow = new google.maps.InfoWindow();
 }

 // Rest of the code here
}

In the map definition literal object, add a new property
named infoContent. In this variable is where you define the
HTML and the text for what you want your information win-
dow to look like. Add this property and some different HTML
for each marker in your locations array so you can see an
information window for each marker.

locations.push({
 "latitude": 36.036020,
 "longitude": -86.787600,
 "title": "Paul's Training Company",
 "marker": null,
 "infoContent": "<div class='info-window'>
 <address>Paul's Training Company

 117 Franklin Rd

 Brentwood, TN 37027</address>
 </div>"
});

origin, destination, and travelMode properties set to the
appropriate values. The second parameter to the route()
method is a callback function in which you check the status
to see if the directions were able to be rendered. If they
are, call the setDirections() method passing in the response
passed to the callback. Call the setMap() method and pass
in the map object and Google Maps will draw the blue line
as shown in Figure 5.

Call the new addDirections() function at the end of the
initialize() function. Create two new LatLng objects from
the first two entries in your locations array. For this ar-
ticle, you’re using latitude and longitude to draw the di-
rections between the two locations. However, the route()
method on the DirectionsService class also accepts two
addresses.

// Add directions between the two points
addDirections(
 new google.maps.LatLng(
 locations[0].latitude,
 locations[0].longitude),
 new google.maps.LatLng(
 locations[1].latitude,
 locations[1].longitude));

Try It Out
Save your changes to this page and redraw the Web page.
You should now see a blue line connecting the first marker
with the second marker. If you don’t see a blue line, check
the console window for any error messages.

Directions with Text
In addition to just showing a blue line, Google Maps can
also display step-by-step directions as text on your Web
page, as shown in Figure 6.

Determine where on your Web page you wish to have Google
Maps draw the text directions and add a <div> in that loca-
tion, as shown in the code snippet below.

<div id="directionsArea">
</div>

In the addDirections() function, add the code shown below
after the call to the setMap() method. The code in bold
calls the setPanel() method on the DirectionsRenderer
class and you pass in a reference to the HTML <div> ele-
ment within which you want Google Maps to render the text
directions.

if (status === 'OK') {
 renderer.setDirections(response);
 // Render directions on the map
 renderer.setMap(map);

 // Call setPanel() to display text directions
 renderer.setPanel(
 document.getElementById("directionsArea"));
}

Try It Out
Save your changes to this page and redraw the Web page.
You should now see a panel with text directions just below
your map. If you don’t see the text directions, check the
console window for any error messages.

Figure 7: Add an informational window to provide a better
description of the location

Using Geolocation and Google Maps

23codemag.com

Getting the Sample Code

You can download the sample
code for this article by
visiting www.CODEMag.com
under the issue and article,
or by visiting www.pdsa.com/
downloads. Select “Fairway/
PDSA Articles” from the
Category drop-down.
Then select “Using Geolocation
and Google Maps” from
the Item drop-down.

 "infoWindow" : null,
 "title": "Paul's Training Company",
 "infoContent": "content here"
});

Remove the code that creates the instance of the sin-
gle infoWindow variable from within the initialize()
function.

function initialize() {
 // Create new InfoWindow if it is not already
 if (infoWindow == null) {
 infoWindow = new google.maps.InfoWindow();
 }

 // Rest of the code here
}

Locate the addInfoWindow() function and add a line of code
to set the new infoWindow property on the location ob-
ject to a new instance of a google.maps.InfoWindow class.
Within the addListener() function be sure to call the setCon-
tent() and open() methods on the infoWindow property of
the location object you pass in.

function addInfoWindow(location) {
 location.infoWindow =
 new google.maps.InfoWindow();

 // Add click event to marker
 google.maps.event.addListener(location.marker,
 'click', function () {
 // Add HTML content for window
 location.infoWindow.setContent(
 location.infoContent);
 // Open the window
 location.infoWindow.open(
 map, location.marker);
 });
}

Try It Out
Save your changes and when you now click on each mark-
er, the previous information windows stay visible. You can
choose which method you like better and use the appropri-
ate code.

Summary
In this article, you learned to use the HTML 5 geolocation
object to retrieve a user’s current latitude and longitude.
Most modern browsers support this object, so you shouldn’t
have any issues using this. The user must grant the usage of
this object, so be sure to handle the case where your user
doesn’t want to give you their position. In addition to this
object, you learned the basics of working with the Google
Maps API. This API isn’t free to use, but it’s one of the best
APIs available for mapping. You saw how to embed a map,
display locations, and information windows using this API.
There are many more APIs available, such as driving direc-
tions, geofencing, and much more. Take some time to ex-
plore the many different options.

Create an addInfoWindow() function in which you add an
event listener to the marker you created earlier. On the
click event of the marker call the setContent() method of
the information window passing in the HTML you defined
in the map definition object. Call the open() method on
the infoWindow variable passing in the map object and the
marker object. This is what displays the information window
above the marker.

function addInfoWindow(location) {
 // Add click event to marker
 google.maps.event.addListener(location.marker,
 'click', function () {
 // Add HTML content for window
 infoWindow.setContent(location.infoContent);
 // Open the window
 infoWindow.open(map, location.marker);
 });
}

The addInfoWindow() function needs to be called after you
have created your marker, as you are going to set up the click
event on each marker you add to the map. Locate the loop
in the initialize() function and add a call to the addInfo-
Window() function after the call to the addMarker() function.

for (let index = 0; index <
 locations.length; index++) {
 // Add marker for location
 addMarker(locations[index]);

 // Add info window for location
 addInfoWindow(locations[index]);

 // Extend boundaries to encompass marker
 bounds.extend(locations[index]
 .marker.position);
}

Try It Out
Save your changes to this page and click on one of the loca-
tions. You should see an information window pop up above
the marker. Now, click on another marker and the first infor-
mation window disappears and one displays above the new
marker you just clicked on. The reason for this toggling is
that there’s only one variable to hold an information window
for the map object. If you change the variable, the original
information window is destroyed and the new one appears.

Keep All Information Windows Open
Instead of only having a single information window appear
at a time, you can keep them all open until the user manu-
ally closes each one. Remove the single instance of the in-
foWindow variable within your closure.

let infoWindow = null;

Add an infoWindow property to each location object and
set the initial value to null.

locations.push({
 "latitude": 36.036020,
 "longitude": -86.787600,
 "marker": null,

 Paul D. Sheriff

Using Geolocation and Google Maps

www.pdsa.com/downloads

24 codemag.comVue’s Composition API

ONLINE QUICK ID 2011041

Vue’s Composition API
There was a bit of a controversy last year when the Vue team decided to show new ideas for composing components.
Once the dust had settled, the Composition API was better for the battle. In this article, I’ll show you how the Composition API
works and why I think it’s a better option for building your Vue applications going forward.

What’s Wrong with the Options API?
First of all, nothing’s wrong with the options API. If you’re
happy with the Options API, stay with it. But I hope you can
see why the Composition API is a better way to do it. When
I first started using Vue, I really liked how they used an
anonymous object to set up a component. It was easy and
felt natural. The longer I used it, the more it started to feel
weird. Its reliance on the manipulating the this pointer was
hiding some of the magic of how Vue works.

For example:

export default {
 data: () => {
 return {
 name: "Shawn",
 };
 },
 methods: {
 save: function () {
 alert(`Name: ${this.name}`); // MAGIC
 },
 },
 mounted: async function () {
 this.name = "Shawn's Name'; // MAGIC
 }
};

Because much of the work is done when the functions you
define (e.g., save/mounted) are called, you have to really
understand how the this pointer works. For example, can
you tell me without compiling if this would have worked?

 mounted: async function () {
 this.load()
 .then(function() {
 this.name = "Shawn's Done";
 });
 }

No, it wouldn’t. The reason is that the mounted function’s this
member has the Vue properties added. When you create a new
nested function (e.g., in the call to then()), it creates a new
scope and therefore a new this member. You’d have to remem-
ber to fix it by either using an Arrow function (e.g., () =>)
or wrapping the this pointer. For example, this small fix
works:

 mounted: async function () {
 this.load()
 .then(() => { // The fix
 this.name = "Shawn's Done";
 });
 }

But that requires quite a lot of finesse to get right. What
feels simple and right at first, turns into a bit of a headache.

In addition, the way that properties are made reactive is an ad-
ditional piece of magic. When the members are returned from
the data function, Vue wraps them (often using Proxy objects)
to be able to know when the object changes. Of course, this
can be confusing if you try to replace the object. For example:

export default {
 data: () => {
 return {
 name: "Shawn",
 items: []
 };
 },
 mounted: async function () {
 this.load()
 .then(result => {
 // breaks reactivity
 this.items = result.data;
 });
 }
};

This is one of the most common problems with Vue. Al-
though these can be gotten around pretty simply, it’s an im-
pediment to learning how Vue works. Nothing is as frustrat-
ing as a bug that doesn’t work and doesn’t throw an error.
These issues often end up happening with the Options API.

Lastly, there’s a big issue with composing your components.
Being able to use shared functionality was difficult with the
Options API. Loading objects or methods that you then used
in the component was hindered by the nature of the Options
object. To combat that, Vue uses the notion of mixins. For ex-
ample, you could create a mixin to extend a component like so:

import axios from "axios";

export default {
 data: function () {
 return {
 items: []
 };
 },

 methods: {
 load: async function() {
 let url =
 "https://restcountries.eu/rest/v2/all";
 let result = await axios.get(url)
 this.items.splice(0,
 this.items.length,
 ...result.data);
 },
 removeItem: function (item) {
 let index = this.items.indexOf(item);
 if (index > -1) {
 this.items.splice(index, 1);

Shawn Wildermuth
shawn@wildermuth.com
wildermuth.com
twitter.com/shawnwildermut

Shawn Wildermuth has
been tinkering with com-
puters and software since
he got a Vic-20 back in the
early ’80s. As a Microsoft
MVP since 2003, he’s also
involved with Microsoft
as an ASP.NET Insider and
ClientDev Insider. He’s
the author of over twenty
Pluralsight courses, written
eight books, an interna-
tional conference speaker,
and one of the Wilder
Minds. You can reach
him at his blog at
http://wildermuth.com.
He’s also making his first,
feature-length documentary
about software developers
today called “Hello World:
The Film.” You can see
more about it at
http://helloworldfilm.com.

www.wildermuth.com
http://twiter.com/shawnwildermuth

25codemag.com Vue’s Composition API

 name
 };
 },
};

Instead of just assigning the value in the return, create it
with a local variable inside the setup. Why would you? Be-
cause of JavaScript closures. Let’s extend this and make a
function that will be used in the markup:

export default {
 setup() {

 const name = "Shawn";

 function save() {
 alert(`Name: ${name}`);
 };

 return {
 name,
 save
 };
 },
};

The function can access the name because they’re in the
same scope. This is the magic of the Composition API. No
magic, just JavaScript. What you can do with this pattern
can become much more complex, but the basis of it all is
just the closures. That’s it.

In this example, the name is never changed. For Vue to be
able to handle binding, it needs to know about any chang-
es to the name. In this example, if you change the code to
change the name in save(), it won’t be reflected in the UI:

export default {
 setup() {

 const name = "Shawn";

 function save() {
 name = name + " saved"; // name changed
 alert(`Name: ${name}`);
 };

 return {
 name,
 save
 };
 },
};

Reactivity
When you return the object of the bindable object, Vue can
see changes to the specific properties (the object is observed
for changes). But because you’re really assigning a new name
in the Save method, there’s no way for Vue to know it’s been
changed. It’s still seeing the old name. To address this, Vue
uses two methods of reactivity: ref and reactive wrappers.

To make the name reactive, you can just wrap it with a ref object:

import { ref } from "@vue/composition-api";

 }
 }
 }
}

Note that the mixin looks a lot like the Vue Options API. It
simply does a merge of the objects to allow you to add on
to specific components. You use a mixin by specifying it in
the component:

import dataService from "./dataService.mixin";

export default {
 mixins: [dataService],
 ...

The biggest issue with mixins is that you can’t protect or
easily know about name collision. It becomes trial and error
to find out that a mixin was changed to use the same prop-
erty or method of the component (or other mixins). Again,
the magic is hidden behind the veneer of Vue and it makes
debugging more difficult.

In the light of these limitations, the Composition API was born.

What’s the Composition API?
Now that I’ve discussed the limitations of the Options API,
let me introduce you to the Composition API. If you’re still
using Vue 2, you can still use the Composition API. To get
started, you need to import the composition API library.
First add it to your npm package:

> npm i @vue/composition-api --save

To enable the composition API, you simply have to register
the composition API (usually in the main.js/ts):

import Vue from 'vue'
import VueCompositionAPI
 from '@vue/composition-api'

Vue.use(VueCompositionAPI)

Now that you’ve enabled it, let’s take a look at the first Com-
position API component. At first, the look of a component
looks similar:

export default {
 setup() {
 return {
 };
 },
};

It still starts with an anonymous object but the only mem-
ber (so far) is a method called setup. Inside the setup,
you’ll return any data you need. This is very much like the
function-type of data property in the Options API:

export default {
 setup() {

 const name = "Shawn";

 return {

26 codemag.com

 return {
 name,
 save,
 items
 }; // Object is reactive,
 // but the members aren't
 // automatically ref objects

Therefore, you don’t need to wrap the object returning as a
reactive object. Now that you have the basics of properties
and reactivity, let’s talk about how the Composition API al-
lows you to compose your components differently.

Once you have ref and reactive objects, you can watch for chang-
es. There are two methods to do this: watch and watchEffect.
Watch allows you to respond to a change in a single object:

setup() {

 const name = ref("Shawn");

 watch(() => name,
 (before, after) => {
 console.log("name changes");
 });

 return {
 name
 };
 },

The watch function takes two parameters: a callback to re-
turn the data to watch, and a callback to be called when the
change happens. It supplies the before and after values in
case you need to use them.

Alternatively, you can use watchEffect, which watches for
any changes in the reactive objects referred to in the com-
ponent. It takes just a single callback:

 watchEffect(() => {
 console.log("Ch..ch...ch...changes.");
 });

Now you can use reactivity to not only make the markup
react to changes, but also to have your own code react to
those same changes.

Composing Components
When composing components, the Composition API simply
encourages you to use the scope and closures to solve the
problem. For example, you might create a simple factory to
create the objects for your component:

import axios from "axios";

export default function () {

 const items = [];

 async function load() {
 const url =
 "https://restcountries.eu/rest/v2/all";
 let result = await axios.get(url);
 items.splice(0,
 items.length,

export default {
 setup() {

 const name = ref("Shawn");

 function save() {
 name.value = name.value + " saved";
 alert(`Name: ${name.value}`);
 };

 return {
 name,
 save
 };
 },
};

The name object is now wrapped with a ref object. This is a
simple reactive that provides a property called value that
represents the actual value. You’re now assigning and re-
porting the name using the value property. Because it’s us-
ing a ref wrapper, the changes will be notified to the user
interface. This is an important concept, as you’re surfacing
some of the magic so that it’s more obvious what’s happen-
ing here.

This works well with primitive objects, but for objects with
their own state (e.g., your classes or arrays), changes to the
value aren’t enough. What you really need is to use a proxy
object so that any changes that happen inside functions on
the object cause notifications of those changes.

import { ref, reactive }
 from "@vue/composition-api";

export default {
 setup() {

 const name = ref("Shawn");
 const items = reactive([]);

 function save () {
 // Change Array
 items.splice(0,items.length);
 name.value = name.value + " saved";
 alert(`Name: ${name.value}`);
 };

 return {
 name,
 save,
 items
 };
 },
};

In this example, because you’re calling splice to change the
item collection, Vue needs to know about this change. You
do that by wrapping the complex object (the array, in this
case) with another wrapper called reactive().

The reactive wrapper from the Composition API is the same
as Vue 2’s Vue.observable wrapper.

One thing to note is that the object that’s returned to bind
to the UI is also reactive by the runtime:

Vue’s Composition API

27codemag.com

 const url =
 "https://restcountries.eu/rest/v2/all";
 let result = await axios.get(url);
 items.splice(0, items.length, ...result.data);
};

export function removeItem(item) {
 let index = items.indexOf(item);
 if (index > -1) {
 items.splice(index, 1);
 }
};

The difference here is that it’s exporting each of the items
separately (it doesn’t generate them like in the factory pat-
tern). If you use the items in separate components, you’ll be
manipulating the one instance. Using it is almost the same:

import { ref,
 reactive,
 onMounted }
 from "@vue/composition-api";

// Import them instead of generating them
import { load,
 items,
 removeItem } from "./dataService";

export default {
 setup() {

 const name = ref("Shawn");

 function save () {
 alert(`Name: ${this.name}`);
 };

 return {
 load, // from import
 removeItem, // from import
 name,
 save,
 items // from import
 };
 },
};

If you’re already using Vuex, you can still use it in the Com-
position API. Vuex is more complex, but it does add some
strictness to the read/write processes (only allowing changes
in mutations). If you haven’t worked with Vuex, I cover it in
the January/February 2020 issue of CODE Magazine (https://
www.codemag.com/Article/2001051/Vuex-State-Manage-
ment-Simplified-in-Vue.js). Assuming you have a Vuex store
created, the wiring up is different. There are no more helpers,
as the magic that they do can be handled pretty simply:

import { ref,
 reactive,
 computed,
 onMounted }
 from "@vue/composition-api";
import store from "./store";

export default {
 setup() {

 ...result.data);
 }

 function removeItem(item) {
 let index = items.indexOf(item);
 if (index > -1) {
 items.splice(index, 1);
 }
 }

 return {
 items,
 load,
 removeItem
 };
}

In this case, you create a function that generates the func-
tionality you need. You can import it into your component
and use it by calling the function:

import { ref,
 reactive,
 onMounted } from "@vue/composition-api";
import serviceFactory
 from "./dataService.factory";

export default {
 setup() {

 const name = ref("Shawn");

 // Create them by calling
 // the exported function
 const { load, removeItem, items} =
 serviceFactory();

 // Use Load from factory function
 onMounted(async () => await load());

 function save () {
 alert(`Name: ${this.name}`);
 };

 return {
 load, // from factory function
 removeItem, // from factory function
 name,
 save,
 items // from factory function
 };
 },
};

This pattern allows you to create factory functions to inject
the functionality you need in your component. Remember, in
this pattern, you’re getting a new instance of these items on
every call (which is often what you want). But if you wanted
to share the data (like showing the same data on different
forms), you could always use a simpler instance pattern:

import axios from "axios";

export let items = [];

export async function load() {

Vue’s Composition API

https://www.codemag.com/Article/2001051/Vuex-State-Management-Simplified-in-Vue.js

28 codemag.com

Additionally, you can add a second parameter to have access
to the emit, slots, and attrs objects, which the Options API
exposes on the this pointer:

 setup(props, context) {
 watch(() => props.isBusy,
 (b,a) => context.emit("busy-changed", a));
 }

Using Components
There are two ways to use components in Vue. You can glob-
ally register components (which is common for libraries) so
that they can be used anywhere:

import WaitCursor
 from "./components/WaitCursor";

Vue.component("wait-cursor", WaitCursor);

More commonly, you’d add components to specific compo-
nents that you’re using. In Composition API, it’s the same as
it was with the Options API:

import WaitCursor
 from "./components/waitCursor";
import store from "./store";
import { computed } from "@vue/composition-api";

export default {
 components: {
 WaitCursor // Use Component
 },
 setup() {
 const isBusy =
 computed(() => store.state.isBusy);

 return {
 isBusy
 };
 },
};

Once you specify a component in the Composition API, your
markup can just use it:

<div>
 <WaitCursor message="Loading..."
 :isBusy="isBusy"></WaitCursor>
 <div class="row">
 <div class="col">
 <App></App>
 </div>
 </div>
</div>

The way to use components isn’t any different than it is in
the Options API.

Using Composition API in Vue 3
If you’re using Vue 3, you don’t need to opt-into the Compo-
sition API. It’s defaulted in the set up of a new project. The
@vue/composition-api library is only used for Vue 2 projects.
The real change for Vue 3 is that when you need to import
Composition APIs, you need to get them directly from Vue:

import { ref,
 reactive,
 onMounted,

 const name = ref("Shawn");
 const items =
 computed(() => store.state.items);
 const removeItem = item => {
 store.commit("removeItem", item);
 };

 onMounted(async () => {
 await store.dispatch("load");
);

 function save () {
 alert(`Name: ${this.name}`);
 };

 return {
 removeItem, // from function
 name,
 save,
 items // from computed
 };
 },
};

Generally, state is turned into computed items: mutations
and actions (e.g., commit and dispatch) are wrapped with
simple functions. If necessary, they’re returned in the object.
Although the helpers were useful (and I’m sure someone will
have a way to simplify this), this is, again, more obvious what’s
going on in these cases. You can compose your components
more obviously using the Composition API. I’ve gotten to cre-
ating components, so let’s talk about using components next.

Using Props
Because you’re building components, you’d like to be able
to use props to pass data to your components. How is this
handled in the Composition API? Defining the props is the
same as it is with the Options API:

export default {
 name: "WaitCursor",
 props: {
 message: {
 type: String,
 required: false
 },
 isBusy: {
 type: Boolean,
 required: false
 }

 },
 setup() {
 }
}

But because the properties aren’t added to the magic this point-
er, how do you use the properties in setup? You can get access
to the properties by adding the optional parameter to setup:

 setup(props) {
 watch(() => props.isBusy,
 (b,a) => {
 console.log(`isBusy Changed`);
 });
 }

Vue’s Composition API

29codemag.com

 watch,
 watchEffect }
 //from "@vue/composition-api";
 from "vue";

Everything else is just the same. Just import from “vue”. In
Vue 3, it’s just a little simpler to use the Composition API as
it’s the default behavior.

Using Composition API in TypeScript and Vue 3
One of the main goals of Vue 3 was to improve the TypeScript ex-
perience. Using the Composition API certainly benefits from using
TypeScript. There are type libraries for all of what I’ve talked about.
But to add type safety, you do have to make some small changes to
use TypeScript. First, when you create a component, you have to
wrap your component’s object with defineComponent:

import {
 defineComponent,
 reactive,
 onMounted,
 ref
} from "vue";

import Customer from "@/models/Customer";

export default defineComponent({
 name: "App",
 setup() {
 ...
 }
});

Additionally, you can use types in your set up:

 const customers =
 reactive([] as Array<Customer>);
 const customer = ref(new Customer());
 const isBusy = ref(false);
 const message = ref("");

In these examples, the variables are inferred as types (for
example, the Customers object is Reactive<Customer[]>). In
addition, the API is typed so it will lower your chances to
pass in the wrong data. Of course, additionally, IntelliSense
is a big benefit if you’re using TypeScript (especially in Vi-
sual Studio or VS Code), as seen in Figure 1.

Where Are We?
Whether you’re a veteran Vue developer or brand new, get-
ting used to the Composition API is going to require you to
change your mindset. The move from convention to some-
thing that’s more explicit may be uncomfortable, but I’ve
found that I like the new model a lot better. I spend less
time scratching my head about what’s happening with func-
tion scope and trying to remember when I can and can’t use
the arrow functions. I hope I’ve convinced you.

Figure 1: IntelliSense in TypeScript

SPONSORED SIDEBAR:

Need FREE
Project Advice?
CODE Can Help!

No strings free advice on
a new or existing software
development projects.
CODE Consulting experts
have experience in cloud,
Web, desktop, mobile,
microservices, and DevOps
projects. Schedule your
free Hour of CODE call
with our expert consultants
(not a sales call!).
For more information,
visit www.codemag.com/
consulting or email us
at info@codemag.com.

 Shawn Wildermuth

Vue’s Composition API

Instantly Search
Terabytes

®

 The Smart Choice for Text
Retrieval® since 1991

1-800-IT-FINDS
www.dtSearch.com

dtSearch’s document filters
support:
• popular file types
• emails with multilevel

attachments
• a wide variety of databases
• web data

Over 25 search options
including:
• efficient multithreaded search
• easy multicolor hit-highlighting
• forensics options like credit

card search

Visit dtSearch.com for
• hundreds of reviews and

case studies
• fully-functional enterprise

and developer evaluations

Developers:
• SDKs for Windows, Linux,

macOS
• Cross-platform APIs for

C++, Java and .NET with .NET Standard / .NET Core
• FAQs on faceted search,

granular data classification,
Azure and more

www.dtsearch.com
www.codemag.com/consulting

codemag.com30 Introduction to the Go Programming Language

ONLINE QUICK ID 2011051

Introduction to the Go
Programming Language
Go (aka Golang) is one of the fastest growing programming languages. It’s an open-source language released by Google in
2009 and created by Ken Thompson (designer and creator of UNIX and C), Rob Pike (co-creator of UTF 8 and UNIX format), and
Robert Griesemer. It’s a multi-purpose programming language specifically designed to build scalable and faster applications.

Although Go has been around for quite a while now, it
didn’t manage to get wide adoption by developers until
more recently due to the proliferation of cloud comput-
ing and microservices. Today, Go has been widely used
by major companies such as Google, Dropbox, Uber, and
Dailymotion.

In this article, I’ll walk you through the language and dive
into some areas where Go shines. By the end of this ar-
ticle, you should have a pretty solid feel of Go and be on
your way to writing some cool Go packages.

Getting Started with Go
Installing Go on your computer is straight-forward—go to
https://golang.org/dl/ and download the installer for the
OS you are using (see Figure 1).

You can use your favorite code editor to write Go code. I use
Visual Studio Code.

Hello World!
In the spirit of adhering to tradition, let’s create a text file
named helloworld.go and populate it with the following
statements:

package main

import "fmt"

func main() {
 fmt.Println("Hello, world!")
}

The first line indicates the name of this package, which is
main. Packages are used in Go to organize and reuse code.
Within this main package, you have the main() function,
which is the function to call when you start your program.
Note that you also import another package called fmt,
which is a package that implements formatted I/O. This
package contains functions (e.g., Println) that allow you
to print output to the console, similar to C’s printf() and
scanf() functions.

To run the helloworld.go, you can first build the program
using the go tool with the build command:

$ go build helloworld.go

A binary will then be created. You can now run the binary
and see the output:

$./helloworld
Hello, world!

Alternatively, you can also build and run the program using
the run command:

$ go run helloworld.go
Hello, world!

You can also use the built-in println() and print() function
for printing purposes.

Variables
There are a couple of ways to declare variables in Go. To
declare a variable explicitly, you use the var keyword:

var num1 = 5 // type inferred
var num2 int = 6 // explicitly typed
var rates float32 = 4.5 // declare as float32
 // and initialize

var raining bool = false // declare as bool
 // and initialize

Notice that you can either explicitly specify the type of
variable, or let the compiler infer it for you. When you
are declaring a variable and initializing it, you should use
type inference. Otherwise, you need to specify the type
explicitly:

var str string // declare as string

Variables declared without initialization are zero-valued.
For example, str above would have an initial value of “” and
an integer variable has a value of 0.

Figure 1: Downloading the Go installer for your OS

Wei-Meng Lee
weimenglee@learn2develop.net
http://www.learn2develop.net
@weimenglee

Wei-Meng Lee is a technolo-
gist and founder of Devel-
oper Learning Solutions
(www.learn2develop.net),
a technology company spe-
cializing in hands-on train-
ing on the latest technolo-
gies. Wei-Meng has many
years of training experiences
and his training courses
place special emphasis
on the learning-by-doing
approach. His hands-on
approach to learning
programming makes
understanding the subject
much easier than read-
ing books, tutorials, and
documentation. His name
regularly appears in online
and print publications such
as DevX.com, MobiForge.
com, and CODE Magazine.

codemag.com 31Introduction to the Go Programming Language

str := fmt.Sprintf(
 "num1 is %d and rates is %.2f",
 num1, rates)
fmt.Println(str)

Data Structures
Go supports a number of data structures:

• Arrays
• Slices
• Maps
• Struct

The following sections discuss each of these in more detail.

Arrays
In Go, an array has fixed size. That is, once an array is de-
clared, its size cannot be changed. The following shows
some examples of declaring arrays of specific sizes:

var nums [5] int // int array of 5 items
fmt.Println(nums) // [0 0 0 0 0]

var names [3] string // string array of 3
 // items
fmt.Println(names) // []

var ended [3] bool // bool array of 3 items
fmt.Println(ended) // [false false false]

Array elements are zero-based, and you can access them in-
dividually and also assign values to them:

names[0] = "iOS"
names[1] = "Android"
names[2] = "Symbian"
fmt.Println(names) // [iOS Android Symbian]

Slices
As mentioned, arrays in Go are fixed in size. A Slice in Go is a
light-weight data structure that’s more flexible than arrays.
Think of slices as a view into an array.

Let’s see how slices are created:

x := make([] int, 5) // creates a slice of 5
 // elements, capacity =
 // 5
fmt.Println(x) // [0 0 0 0 0]

The make() function allocates and initializes an array of the
specified type. In the above code snippet, x is a slice of five
elements. You can also create a slice of two elements, but
with a maximum capacity of three:

x = make([] int, 2, 3) // creates a slice
 // of 2 elements,
 // capacity = 3
fmt.Println(x) // [0 0]

In the above example, x now has two elements, but it can contain
a maximum of three items. An easier way to write a slice is this:

odds := [] int {1,3,5}
fmt.Println(odds) // [1 3 5]

There’s a shortcut for declaring and initializing variables
without needing to use the var keyword. This is done using
the := operator, like the following:

num3 := 7 // declare and init
num4 := num3

You can also declare multiple variables and assign them in a
single statement, like this:

var num5, num6 int = 8, 9 // multiple
 // declares and
 // assignment

Here’s another example where you can declare and initialize
multiple variables:

var (
 age = 25
 name = "Samuel"
)

String Interpolation
One of the common things you do in programming is print-
ing out the values of variables in a string. Consider the fol-
lowing declarations:

 var num1 = 5
 var rates float32 = 4.5

Suppose you want to print out the values of these two vari-
ables in a string. To do that, you need to convert the two
numeric variables using the strconv package:

import (
 "fmt"
 "strconv"
)
...
 fmt.Println("num1 is " +
 strconv.Itoa(num1) +
 " and rates is " +
 strconv.FormatFloat(
 float64(rates),'f',2,32))
 // output is:
 // num1 is 5 and rates is 4.50

The strconv package contains a number of functions for
converting numeric/Boolean values to strings, such as:

s := strconv.FormatBool(true)
s := strconv.FormatFloat(3.1415, 'E', -1, 64)
s := strconv.FormatInt(-42, 16)
s := strconv.FormatUint(42, 16)

There are also functions to convert strings to numeric,
such as:

b, err := strconv.ParseBool("true")
f, err := strconv.ParseFloat("3.1415", 64)
i, err := strconv.ParseInt("-42", 10, 64)
u, err := strconv.ParseUint("42", 10, 64)

An easy way to combine string and numeric values is to use
the Sprintf() function with the various format specifiers,
like the following:

codemag.com

Let’s now assign x to y (see the top of Figure 3):

y := x
fmt.Println(x) // [0 0]
fmt.Println(y) // [0 0]

If you now append an item to x and then assign it back to y:

y = append(x,5)
fmt.Println(x) // [0 0]
fmt.Println(y) // [0 0 5]

Then x still points to the original two numbers and y now
points to the same numbers, plus the additional one appended
to x (see the middle of Figure 3). This is because y (as well as
x) has the capacity of four and has room for up to four items.

When you now modify the second item in y, both x and y are
affected (see the bottom of Figure 3):

y[1] = 99
fmt.Println(x) // [0 99]
fmt.Println(y) // [0 99 5]

Slicing on Slices/Arrays
You can perform slicing (extracting a range of values) on
arrays and slices. Consider the following array:

var c[3] string
c[0] = "iOS"
c[1] = "Android"
c[2] = "Windows"

To extract the first two items, you can use the following slicing:

b := c[0:2]
fmt.Println(b) // [iOS Android]

The result of the slicing (b) is a slice. You can print the ca-
pacity of b using the cap() function:

fmt.Println(cap(b)) // 3

Observe that the capacity of b assumes the capacity of the un-
derlying array - c. You can change the capacity of the slice b,
by specifying the capacity as the third argument in the slicing:

b = c[0:2:2]
fmt.Println(b) // [iOS Android]
fmt.Println(cap(b)) // 2

Maps
Besides array, another essential data structure is a dictionary.
In Go, this is known as a map, which implements a hash table.
The following statement declares a map type called heights:

var heights map[string] int

The following statement initializes the map using the
make() function:

heights = make(map [string] int)

The following statement declares and initializes an empty map:

weights := map[string] float32 {}

In fact, if you recall, earlier you declared an array using this:

var nums [5] int // nums is an array

If you remove the 5, nums is now a slice and not an array:

var nums [] int // nums is now a slice

Understanding the Behavior of Slices
Consider the following code snippet:

original := []int{1,2,3,4}
other := original

In the above code snippet, original is a slice of capacity
four. After you assigned original to other, other is now a
reference to original (see the top of Figure 2).

Now, when you make changes to the third element in other
like this:

other[2] = 8

Both slices now print the same values (see also the middle
of Figure 2):

fmt.Println(original) // [1 2 8 4]
fmt.Println(other) // [1 2 8 4]

If you append an item to original and then assign it to other:

other = append(original, 5)

Then other now points to a new slice (as it has exceeded
its capacity of four), as shown in the bottom of Figure 2.
So when you now make changes to other, original won’t
be affected:

other[2] = 9
fmt.Println(other) // [1 2 9 4 5]
fmt.Println(original) // [1 2 8 4]

Consider another example, where you now have a slice of
two elements but with a capacity of four:

x := make([] int, 2, 4)
fmt.Println(x) // [0 0]

Figure 2: The original and other slices

Figure 3: The x and y slices

32 Introduction to the Go Programming Language

codemag.com

ptB.X = 55
fmt.Println(ptA) // {55 6}
fmt.Println(ptB) // &{55 6}

You can call the Length() method of the Point struct like this:

fmt.Println(ptA.Length()) // 7.810...

Here is another example of creating a new instance of the
Point struct:

pt1 := Point{X:2,Y:3}
pt2 := pt1 // making a copy

Now pt2 is a copy of pt1. As usual, the following statements
prove this:

pt2.X = 22
fmt.Println(pt1) // {2 3}
fmt.Println(pt2) // {22 3}

Decision-Making and
Looping Constructs
Go’s decision-making statements are very similar to other
languages. It supports the standard if-else statement and
switch statement, but surprisingly, no ternary statement.
For looping, there’s only one looping construct: the for loop.

The following sections will discuss these in more detail.

If-else
Decision making in Go is very similar to other languages:

if true {
 fmt.Println(true)
} else {
 fmt.Println(false)
}

Interestingly, there’s no ternary operator in Go. However,
the if statement allows you to have two expressions in it:
one assignment and one condition. Consider the following:

limit := 10
if sum := addNums(5,6); sum <= limit {
 fmt.Println(sum)
} else {
 fmt.Println(limit)
}
// prints out 10

In the above, the if statement first evaluates the add-
Nums() function and assigns the result to sum. It then
evaluates the condition to check if sum is less than or equal
to limit.

Switch Statements
If you need to evaluate multiple conditions, use the switch
statement:

grade := "B"
switch grade {
case "A":
 fallthrough
case "B":

You can also declare and initialize the map variable with
some values:

weights := map[string] float32 {
 "Peter": 45.9,
 "Joan": 56.8,
}

The following statement adds a new key/value pair to the
heights map:

heights["Peter"] = 178

To delete the key/value pair, use the delete() function:

delete(heights, "Peter")

To check whether a key exists in the map, use the following
code snippet:

if value, ok := heights["Peter"]; ok {
 fmt.Println(value)
} else {
 fmt.Println("Key does not exists")
}

If the key exists, the ok variable will be set to true; other-
wise, it will be set to false. You can also iterate through a
map using the for loop together with the range keyword:

// iterating over a map
for k, v := range heights {
 fmt.Println(k,v)
}

Structs
Go doesn’t have classes, but it supports structs. The follow-
ing shows the Point struct containing two members:

type Point struct {
 X float64
 Y float64
}

You can also define methods on structs. A method is a func-
tion with a special receiver argument. To add a method to
a struct, define a function with the struct passed in as an
argument defined before the function name, like this:

func (p Point) Length() float64 {
 return math.Sqrt(math.Pow(p.X,2.0) +
 math.Pow(p.Y,2.0))
}

The following statement creates an instance of the Point
struct:

ptA := Point{5,6}

If you want to create a reference to another struct, use the
& character:

ptB := &ptA // assigning a reference

Here, ptB is a reference to ptA. To prove this, modify the value
of X through ptB and then print out the values of ptA and ptB:

33Introduction to the Go Programming Language

codemag.com

returns an index and item of each element in the array/
slice. Here’s an example:

 primes := [] int {2, 3, 5, 7, 11, 13}
 for i, v := range primes {
 fmt.Println(i, v)
 }

The above code snippet prints out the following:

0 2
1 3
2 5
3 7
4 11
5 13

You can also iterate through a string using the range key-
word and the for loop:

s:= "Hello, world!"
for _, c := range s {
 fmt.Printf("%c\n", c)
}

When you iterate through a string, it returns the ASCII code
for each character in the string. To print it out as a char-
acter, you need to use the Printf() function with the %c
format specifier.

Functions
In Go, you define a function using the func keyword:

func doSomething() {
 fmt.Println("Hello")
}

func main() {
 // calling a function
 doSomething()
}

If the function returns a value, you specify the return value
type at the end of the function name:

// returns int result
func addNum(num1 int, num2 int) int {
 return num1 + num2
}

Multiple Return Values
Functions can also return multiple values, very much like
tuples in some languages (like Python):

func countOddEven(s string) (int,int) {
 odds, evens := 0, 0
 for _, c := range s {
 if int(c) % 2 == 0 {
 evens++
 } else {
 odds++
 }
 }
 return odds,evens
}

 fallthrough
case "C":
 fallthrough
case "D":
 fmt.Println("Passed")
case "F":
 fmt.Println("Failed")
default:
 fmt.Println("Undefined")
}
// Passed

There’s no need to specify the break statement in a switch
statement in Go. Once a condition is matched and its as-
sociated block evaluated, it breaks automatically from the
switch statement. If you want to have the default behavior
in C, use the fallthrough keyword.

Looping
Similar to most languages, Go has the for looping con-
struct:

for i:=0; i<5; i++ {
 fmt.Println(i)
}

You can use the for loop to run an infinite loop, like this:

for {
}

There is no while loop in Go, because you can improvise it
using the for loop:

counter := 0
for counter <5 {
 fmt.Println(counter)
 counter++
}

You can use the continue statement to force the for loop
to continue with the next iteration of the loop, skipping all
the code thereafter:

// prints 0 to 9 except 5
for i:=0; i<10; i++ {
 if i==5 {
 continue
 }
 fmt.Println(i)
}

The break statement, on the other hand, exits a for loop
prematurely:

// prints 0 to 4
for i:=0; i<10; i++ {
 if i==5 {
 break
 }
 fmt.Println(i)
}

Ranging
To iterate over an array or slice, you use the range keyword.
When used with the for loop construct the range keyword

34 Introduction to the Go Programming Language

codemag.com

 for _,v := range arr {
 if cond(v) {
 result = append(result, v)
 }
 }
 return result
}

It takes in two arguments: an int array and an anonymous
function (cond), which itself takes in an int value and re-
turns a bool result. Within this filter() function, you iter-
ate through each of the items in the arr array, and call the
cond anonymous function. If the cond anonymous function
evaluates to true, the item in the array is appended to the
result array.

Now if you have an array and want to extract all even num-
bers from the array, you can call the filter() function and
write your own filtering logic using the anonymous function:

 a := [] int {1,2,3,4,5}
 fmt.Println(
 filter(a,
 func(val int) bool {
 return val%2==0
 }))

To extract those numbers that are multiple of threes, you can
simply modify the expression inside the anonymous function:

 a := [] int {1,2,3,4,5}
 fmt.Println(
 filter(a,
 func(val int) bool {
 return val%3==0
 }))

Goroutines
Most developers are familiar with threading. Threading al-
lows you to implement concurrent operations: multiple
functions all running at the same time. In Go, a goroutine is
a light-weight thread managed by the Go runtime. To run a
function as a goroutine, simply call it using the go keyword.

Consider the following example:

package main

import (
 "fmt"
 "time"
)

func say(s string, times int) {
 for i := 0; i < times; i++ {
 time.Sleep(100 * time.Millisecond)
 fmt.Println(i, s)
 }
}

func main() {
 go say("Hello", 3)
 go say("World", 2)

 // prevent main() from exiting
 fmt.Scanln()
}

odds, evens := countOddEven("123456789")

The above countOddEven() function can also be rewritten
using named return types:

func countOddEven(s string) (odds,evens int) {
 ...
 return
}

Variadic Functions
Go supports variadic functions, which are functions with a
variable number of arguments:

func addNums(nums ... int) int {
 total := 0
 for _, n := range nums {
 total += n
 }
 return total
}

To call the addNums() function, you can now pass in any
number of arguments:

 sums := addNums(1,2,3)
 fmt.Println(sums) // 6

 sums = addNums(1,2,3,4,5,6)
 fmt.Println(sums) // 21

Anonymous Functions
An anonymous function is a function without a name. Con-
sider the following statement:

var i func() int

Here, i is declared to be a function that returns int value.
You can now provide an implementation for i:

i = func() int {
 return 5
}

To invoke the anonymous function, you call i the way you
call a normal function, like this:

fmt.Println(i()) // 5

Closures
Anonymous functions are very useful when implementing
closures. A closure is a function that references variables
from outside its body. Closures allow you to pass in func-
tions as arguments into functions. To understand closure,
it’s useful to see a concrete example.

Most programming languages that support closures (AKA lamb-
da functions) come with the predefined filter(), map(), and
reduce() functions. However, Go doesn’t come with these pre-
defined functions. So let’s now implement the filter() function
in Go using closures. Consider the following filter() function:

func filter(arr [] int,
 cond func(int) bool) [] int {
 result := [] int{}

35Introduction to the Go Programming Language

codemag.com

To use the sum() function, let’s now generate 10 random
numbers and assign it to an array, s:

 rand.Seed(time.Now().UnixNano())
 s := []int {}
 for i := 0; i < 10; i++ {
 s = append(s, rand.Intn(100))
 }

Let’s also create a channel to store int values:

c := make(chan int)

Although we only have 10 items in the array, imagine if you
have 1 million items. It will take some time to sum up all the
numbers in the array. For this example, you’ll split this array
into five parts, take each part and pass it to the sum() func-
tion together with the channel c, and call it a goroutine:

parts := 5
partSize := 2
i := 0
for i<parts {
 go sum(s[i*partSize:(i+1)*partSize], c)
 i += 1
}

Essentially, you’re breaking up the array into five parts and
trying to sum each part concurrently. As each goroutine fin-
ishes the summing process, it writes the partial sum to the
channel, as shown in Figure 4.

Channels behave like queues: All items are retrieved in the
same order that they were written (First-In-First-Out).

Because you know that you have five separate goroutines (and
therefore five values to be written to the channel), you can
write a loop and try to extract the five values in the channel:

i = 0
total := 0
for i<parts {
 partialSum := <-c // read from channel
 fmt.Println("Partial Sum: ", partialSum)
 total += partialSum
 i += 1
}
fmt.Println("Total: " , total)

Each value in the channel represents the partial sum of the
values in each array. It’s important to know that when you
send a value into a channel, the goroutine is blocked until
the value is received by another function/goroutine. Like-
wise, when you’re reading a value from a channel, your code
is blocked until the data is read from the channel. In the
event that the goroutines are taking a long time to sum up,
the above code snippet will block until all the partial sums
are retrieved. Listing 1 shows a complete program where you
can simulate the sum() function summing up 1000 numbers.

Go Packages and Modules
Go uses the concept of packages to better organize code for
reusability and readability. So far, you’ve seen how to use
some of the built-in packages like fmt, strconv, math, and
time in your Go application. In this section, you‘ll dive into

In the above code snippet, you have a function called say().
It takes in a string and a number. The number indicates how
many times the given string is to be printed on the con-
sole. There’s a delay of 100ms between each printing. In the
main() function, you call the say() function twice, each one
with the go keyword:

 go say("Hello", 3)
 go say("World", 2)

The first statement calls the say() function as a goroutine. Es-
sentially, it means “go and run the say() function indepen-
dently and immediately return control back to the calling state-
ment.” The second statement does the same. Now you have two
separate instances of the say() function running concurrently.
The result may appear like this (you may get a different result):

0 World
0 Hello
1 World
1 Hello
2 Hello

Each time you run this, you might get a slightly different se-
quence of the words printed. This is because the Go runtime
manages how this functions runs, and you have no control
over which is printed first. Observe that the main() function
has the following statement:

fmt.Scanln()

Without this statement, you’d most likely be unable to see
any outputs. This is because each time a goroutine is called,
the control is immediately returned back to the calling state-
ment. Without the Scanln() function to wait for user input,
the program automatically terminates after the second gor-
outine is called. Once the program is terminated, all gorou-
tines are also terminated and no output will ever be printed.

Channels
Goroutines are executed independently of one another.
But they can communicate with one another through pipes
known as channels. In Go, channels are the pipes that con-
nect concurrent goroutines. You can send values into chan-
nels from one goroutine and receive those values in another
goroutine. To understand the usefulness of channels, con-
sider the following example. Suppose you have a function
named sum() that sums up an array of integer values:

func sum(s []int, c chan int) {
 sum := 0
 for _, v := range s {
 sum += v
 }
 c <- sum
}

Notice that the function has a second parameter:

func sum(s []int, c chan int) {

The chan keyword represents a channel, and in this example, it’s
a channel of type int. When the numbers in the array have been
summed up, the sum is written to the channel via this syntax:

c <- sum

36 Introduction to the Go Programming Language

codemag.com

$HOME
 |__my_app
 |__helloworld.go

The content of the helloworld.go file looks like this:

package main

import (
 "fmt"
 "math"
)

type Point struct {
 X float64
 Y float64
}

func (p Point) Length() float64 {

the topic of packages and modules in more detail. You will
also learn how to create your own packages and make them
available to fellow developers for use.

Go Packages
So far, you’ve seen that your Go applications always have
this first statement:

package main

Go organizes code into units called packages. A package is made
up of a collection of files. The main package is a special package
that contains the main() function, and this makes the main pack-
age an executable program. The main() function serves as the
entry point to your application. All files in a package must be in
the same directory and all package names must be in all lowercase.

Let’s take a look at one example. Suppose you have a direc-
tory named my_app and in it is a file named helloworld.go:

Figure 4: Goroutines adding values to a channel

package main

import (
 "fmt"
 "math/rand"
 "time"
)

func sum(s []int, c chan int) {
 sum := 0
 for _, v := range s {
 sum += v
 time.Sleep(time.Duration(rand.Intn(100)) *
 time.Millisecond)
 }
 c <- sum
}

func main() {
 rand.Seed(time.Now().UnixNano())
 s := []int {}
 for i := 0; i < 1000; i++ {
 s = append(s, rand.Intn(100))

 }
 fmt.Println(s)

 c := make(chan int)
 parts := 5
 partSize := 200
 i := 0
 for i<parts {
 go sum(s[i*partSize:(i+1)*partSize], c)
 i += 1
 }

 i = 0
 total := 0
 for i<parts {
 partialSum := <-c
 fmt.Println("Partial Sum: ", partialSum)
 total += partialSum
 i += 1
 }
 fmt.Println("Total: " , total)
}

Listing 1: Demonstration of the use of channels

37Introduction to the Go Programming Language

codemag.com

Using Third-Party Packages
Unlike languages likes Python or JavaScript where you can
download third-party packages from central repositories like
PyPI or NPM, Go doesn’t have a centralized official pack-
age registry. Instead, you simply fetch third-party pack-
ages through a hostname and path. For example, there’s
a Go package located at https://github.com/hackebrot/
turtle that allows you to obtain emojis based on names. To
install that package, you simply use the go get command
followed by the URL of the package (without the “https://”),
like this:

$ go get github.com/hackebrot/turtle

Once you do that, the github.com/hackebrot/turtle package
is installed in the ~/go/src folder of your local computer:

$HOME
 |__go
 |__src
 | |__github.com
 | |__hackebrot
 | | |__turtle
 | | |__ ...
 | | |__ ...

To use the package, you simply import it into your package,
like this:

package main

import (
 "fmt"
 "github.com/hackebrot/turtle"
)

func main() {
 emoji, ok := turtle.Emojis["smiley"] //
 if !ok {
 fmt.Println("No emoji found.")
 } else {
 fmt.Println(emoji.Char)
 }
}

Creating Go Modules
So far, the package you created in the previous section can
be run directly as an executable program. However, a pack-
age is more useful if it contains functions that can be im-
ported by other programs, just like the way you import the
fmt package that contains functions for printing output to
and getting inputs from the console window. In this section,
you’ll learn how to convert a package into a module so that
it can be imported into another Go application.

To learn how to create a module, let’s create the following
directories:

$HOME
 |__stringmod
 |__strings
 |__quotes

The above creates a module named stringmod, with a sub-
directory named strings. The idea is to group related func-
tionalities into directories so as to logically group them

 return math.Sqrt(math.Pow(p.X,2.0) +
 math.Pow(p.Y,2.0))
}

func main() {
 pt1 := Point{X:2,Y:3}
 fmt.Println(pt1)
}

Observe that the package is named main and so it has the
main() function. You can extract the definition of the Point
struct as well as its method Length() to another file, say,
point.go, and put it in the same directory as helloworld.go:

$HOME
 |__my_app
 |__helloworld.go
 |__point.go

The content of point.go looks like this:

package main

import (
 "math"
)

type Point struct {
 X float64
 Y float64
}

func (p Point) Length() float64 {
 return math.Sqrt(math.Pow(p.X,2.0) +
 math.Pow(p.Y,2.0))
}

It’s important to make sure that the first line uses the same
main package name. With the Point struct and the Length()
method removed, helloworld.go now looks like this:

package main

import (
 "fmt"
)

func main() {
 pt1 := Point{X:2,Y:3}
 fmt.Println(pt1)
}

Because these two files—helloworld.go and point.go—all reside
in the same directory and they have the same package name
(main), they are deemed to be of the same package. To run the
above application, type the following commands in Terminal:

$ cd ~/my_app
$ go run *.go
{2 3}

For this to work, you need to ensure that:

• Both files are in the same directory
• Both packages have the same package name (main)
• One of the files has a main() function

38 Introduction to the Go Programming Language

https://github.com/hackebrot/turtle

codemag.com

In Terminal, type the following commands:

$ cd ~/stringmod
$ go mod init github.com/weimenglee/stringmod
go: creating new go.mod: module github.com/weimenglee/
stringmod

The “go mod init” command creates a go.mod file in the
stringmod directory:

$HOME
 |__stringmod
 |__go.mod
 |__strings
 |__strings.go
 |__quotes
 |__quotes.go

The content of go.mod is:

module github.com/weimenglee/stringmod

The role of the go.mod file is to define the module’s path, so
that it can be imported and used by other packages. Next,
type the following command in Terminal to build the module:

$ go build
go: finding github.com/hackebrot/turtle v0.1.0
go: downloading github.com/hackebrot/turtle
 v0.1.0

During the build process, the package (github.com/hacke-
brot/turtle) required by the quotes package is downloaded
and installed on your local computer in this path: ~/go/
pkg/mod/ directory.

$HOME
 |__go
 |__pkg
 |__mod
 |__github.com
 |__hackebrot
 |__turtle
 |__ ...
 |__ ...

The go.mod file now becomes:

module github.com/weimenglee/stringmod

require github.com/hackebrot/turtle v0.1.0

It lists all the packages required by the packages inside the
module. There’s one additional file created: go.sum. This
file contains the expected cryptographic checksums of the
content of specific module versions. It looks like this:

github.com/hackebrot/turtle v0.1.0 h1:cmS72nZuooIARtgix6IRPvm
w8r4u8olEZW02Q3DB8YQ=
github.com/hackebrot/turtle v0.1.0/go.mod
h1:vDjX4rgnTSlvROhwGbE2GiB43F/l/8V5TXoRJL2cYTs=

Using the Module
With the module created, let’s try to import it into another
package and use it. Add a new file named main.go in the
stringmod folder:

together. This strings folder should contain functions re-
lated to strings. In this example, stringmod is a module and
strings and quotes are packages.

Now, add a file named strings.go to the strings directory
and a file named quotes.go to the quotes directory:

$HOME
 |__stringmod
 |__strings
 |__strings.go
 |__quotes
 |__quotes.go

Populate the strings.go file with the following:

package strings

func internalFunction() {
 // In Go, a name is exported if it
 // begins with a capital letter
}

// Must begin with a capital letter in
// order to be exported
func CountOddEven(s string) (odds,evens int)
{
 odds, evens = 0, 0
 for _, c := range s {
 if int(c) % 2 == 0 {
 evens++
 } else {
 odds++
 }
 }
 return
}

Unlike languages like C# and Java, Go has a much simpler
approach to access modifiers. Instead of specifying whether
a member is private, public, or protected, Go simply uses the
function name to determine if a function is exported (vis-
ible outside the package) or unexported (restricted to use
within the same package). A function name that starts with
a capital letter is exported (i.e., can be accessed outside
the package) and the rest can only be accessed internally
within the package.

Populate the quotes.go file with the following:

package quotes

import (
 "github.com/hackebrot/turtle"
)

func GetEmoji(name string) string {
 emoji, ok := turtle.Emojis[name]
 if !ok {
 return ""
 }
 return emoji.Char
}

Observe that the quotes package has a dependency on an
external package: github.com/hackebrot/turtle.

39Introduction to the Go Programming Language

codemag.com

GitHub. To demonstrate that, I’ve published the module
to GitHub, accessible through the following link: https://
github.com/weimenglee/stringmod.

To install this module on your computer, use the following
command:

$ cd ~
$ go get github.com/weimenglee/stringmod

The package is downloaded in the ~/go/src/ and ~/go/
bin/ folders:

$HOME
 |__go
 |__src
 | |__github.com
 | |__hackebrot
 | | |__turtle
 | | |__ ...
 | | |__ ...
 | |__weimenglee
 | |__stringmod
 | |__ ...
 | |__ ...
 |__bin
 |__stringmod

To use the module in your own package, you can import it
to your application just like you did in the previous section:

package main

import (
 "fmt"
 "github.com/weimenglee/stringmod/quotes"
)

func main() {
 fmt.Println(quotes.GetEmoji("turtle"))
}

 Go Workspace Directory
In the previous section, you saw that Go uses a number of
directories to store your modules and packages. These direc-
tories in your ~/go directory are:

• Src: contains the source code of packages that you
have installed in your computer

• Bin: contains the binary executables of Go applica-
tions that have the main package (and therefore con-
tains the main() function).

• Pkg: contains the non-executable packages. These
packages are typically imported by other applications.

Summary
By now, you should have a pretty good feel for the Go lan-
guage. Syntax wise, it’s close to C and should be very easy
for developers to pick up. Goroutines is one big feature of
the language, which should make it a breeze to create multi-
threaded server-side apps. Hopefully, this article makes
your learning journey much easier and fun!

$HOME
 |__stringmod
 |__strings
 |__strings.go
 |__quotes
 |__quotes.go
 |__main.go

Populate the main.go file as follows:

package main

import (
 "fmt"
 "github.com/weimenglee/stringmod/strings"
 "github.com/weimenglee/stringmod/quotes"
)

func main() {
 o, e := strings.CountOddEven("12345")
 fmt.Println(o,e) // 3 2

 fmt.Println(quotes.GetEmoji("turtle"))
}

Notice that you’re importing the two packages inside the
stringmod modules using the “github.com/weimenglee/
stringmod” import path:

 "github.com/weimenglee/stringmod/strings"
 "github.com/weimenglee/stringmod/quotes"

Also observe that the packages are referred to using their last
name in the package path “github.com/weimenglee/stringmod/
strings” and “github.com/weimenglee/stringmod/quotes”. If
you don’t want to use the last name in the package path, you
can also provide aliases for the packages during import:

package main

import (
 "fmt"
 str
 "github.com/weimenglee/stringmod/strings"
 qt "github.com/weimenglee/stringmod/quotes"
)

func main() {
 o, e := str.CountOddEven("12345")
 fmt.Println(o,e) // 3 2

 fmt.Println(qt.GetEmoji("turtle"))
}

Finally, to run the program type the following command in
Terminal:

$ cd ~/stringmod
$ go run main.go
3 2
🐢

Publishing the Module
So far, your module has been created and tested correctly
to run locally on your computer. To share it with the world,
you simply need to publish it to an online repository, like

 Wei-Meng Lee

40 Introduction to the Go Programming Language

https://github.com/weimenglee/stringmod

41Title articlecodemag.com

Does your team lack the technical knowledge or the resources to start new software development projects,

or keep existing projects moving forward? CODE Consulting has top-tier developers available to fill in

the technical skills and manpower gaps to make your projects successful. With in-depth experience in .NET,

.NET Core, web development, Azure, custom apps for iOS and Android and more, CODE Consulting can

get your software project back on track.

Contact us today for a free 1-hour consultation to see how we can help you succeed.

codemag.com/OneHourConsulting
832-717-4445 ext. 9 • info@codemag.com

TAKE
AN HOUR
ON US!

GET YOUR

FREE HOUR

www.codemag.com/onehourconsulting
mailto:info@codemag.com

42 codemag.comUsing .NET Core Tools to Create Reusable and Shareable Tools and Apps

ONLINE QUICK ID 2011061

Using .NET Core Tools to Create Reusable
and Shareable Tools and Apps
Starting with .NET Core 2.1, Microsoft introduced the .NET Core Tools platform as part of the .NET Core SDK and since then,
these tools have become a vital, although underutilized part of the .NET ecosystem. .NET Core Tools are a simple way to create,
publish, and consume what are essentially .NET Core applications that can be published and shared using the existing NuGet

infrastructure for packaging and distribution. This means
it’s quick and easy to build tools that you can share either
publicly with the world or privately with yourself or your
onsite team.

What’s a .NET Core Tool?
When you break down a .NET Core Tool into its simplest
terms, you end up with this simple statement:

“A .NET Core Tool is a glorified .NET Core application that
can be quickly and easily shared and installed via NuGet.”

The idea behind a .NET Core Tool is to make it easy to build,
publish, and consume executable tools in the same way you
can create NuGet packages for .NET and .NET Core components.

Although the original idea was to build tools to aid as part
of the build and development process, this platform really
offers a much wider scope because you can publish and
share any .NET Core executable application. This includes
servers that run full ASP.NET Core applications or services
and even .NET Core desktop applications.

Why Use Dotnet Tools?
Although the idea behind .NET Core Tools isn’t anything new,
this tooling does provide several benefits to developers and
the entire .NET Core ecosystem. The big selling points are:

• Easy to use
• Single command installs. Example: dotnet tool

install -g LiveReloadServer
• Global path access to run command: LiveReload-

Server --help
• Easy to build

• Uses standard .NET Core projects
• Uses existing NuGet infrastructure
• Nothing new to learn—works with existing tech
• Configured via standard .csproj settings

• Sharing
• Can be easily shared
• Can reach a large number of users via NuGet
• Quickly published and available
• No explicit package validation

• Community
• Ease of use and shareability promotes creation of

tools
• Shared content helps build community

On the flip side, there’s a big prerequisite to using a .NET
Core Tool:

• The .NET Core SDK is required to install a .NET Core Tool

The SDK dependence is both a blessing and a curse: Be-
cause the .NET Core Runtime is guaranteed to be installed,
binaries of your .NET Core Tool can be very small and only
consist of application-specific files. But the .NET SDK must
exist on the target computer and this SDK install is neither
small, nor something that a typical, non-development user
already has installed.

Global and Local .NET Core Tools
.NET Core Tools can be installed either as a global or local
tool. Global tools are installed in a central location on the
local computer and mapped on the global path, so they are
globally accessible. Local tools are installed into a specific
folder and only accessible from there. They’re essentially
project-specific and they-re useful for build systems that
need to encapsulate tools as part of a build process or Con-
tinuous Integration (CI).

In this article, I focus on the usage for global tools and the
sharing aspects of .NET Core Tools as general-purpose utili-
ties using the global -g command line switch. Everything
except the install location and global path access also ap-
plies to local tools in the examples.

Careful: Security of .NET Core Tools
Because .NET Cire Tools are executables installed from a re-
mote source and because there’s no validation process for
published tools, it’s important to understand that there is
a potential security risk to your computer. The code that
comes down can execute locally on your system and has ac-
cess to your local resources when you run the tool.

Be sure you:

• Trust the publisher of the tool.
• Verify that the tool has reviewable source code avail-

able in a repository.
• Check for issues on the repository.

Be careful and know the risks!

To be fair, the same cautions apply to NuGet packages because
those too can execute any code contained in the package or
in a constructor and there’s not much concern around that.

.NET Core Tools install and run on
your local computer, but they’re not
validated in the NuGet Package Store,
so there’s a potential security risk.

Rick Strahl
www.west-wind.com
rstrahl@west-wind.com

Rick Strahl is president of
West Wind Technologies in
Maui, Hawaii. The company
specializes in Web and
distributed application
development and tools,
with focus on Windows
Server Products, .NET,
Visual Studio, and Visual
FoxPro. Rick is the author
of West Wind Web Connec-
tion, West Wind Web Store,
and West Wind HTML Help
Builder. He’s also a C# MVP,
a frequent contributor to
magazines and books, a
frequent speaker at inter-
national developer confer-
ences, and the co-publisher
of CODE Magazine.

43codemag.com Using .NET Core Tools to Create Reusable and Shareable Tools and Apps

Source Code on GitHub

You can check out the full
MagicWindBall project
for this article as well as slides
and additional content
on the GitHub site. Go to:
https://tinyurl.com/dotnettoolsCode

.NET Core Tool or Platform-Specific Binary?

.NET Core supports creating executable binaries for every
platform that it supports. But each platform requires a cus-
tom executable launcher and runtime dependencies to run.
It takes quite a bit of extra effort to create these separate
build targets and distribute each one.

It’s possible to create standalone executables for each plat-
form using either a pre-installed .NET Core runtime installa-
tion or a fully self-contained executable that can contain all
the required runtime files in addition to the files that your
application needs to run. Self-contained applications are
great for self-reliance and predictable behavior, but they’re
terribly large, as the .NET Core base runtimes make up a
minimum of 70MB of distribution size.

A fully self-contained application is useful and sometimes
required. If you’re building an end user tool or application,
a self-contained application that has everything it needs
included is usually a better call. But if you’re building de-
veloper tools, the lightweight and universal .NET Core Tool
distribution experience is often preferable.

The advantage of building a .NET Core Tool is that it’s not
platform-specific. Like a NuGet component, a .NET Core
Tool is distributed as a NuGet package that contains only the
compiled .NET assemblies. There’s no launching executable
packaged. Because .NET Core Tools rely on an SDK installa-
tion to run, the runtime is guaranteed to be there. If dotnet
tool can run on the computer, so can your .NET Core Tool.

This means that you can build a single, relatively small
NuGet package as a .NET Core Tool and it will work on all
supported .NET Core platforms, assuming your code is writ-
ten to otherwise use platform-agnostic features. That’s
cool: The .NET Core Tool provides you with cross-platform
functionality without having to build and maintain multiple
platform-specific loaders and it keeps the deployment size
very small.

Creating and Using .NET Core Tools
Enough abstract talk! Let’s jump in and see how you can:

• Build a .NET Core Tool package for distribution
• Publish a .NET Core Tool package
• Consume a .NET Core Tool package

Create a .NET Core Tool Step-by-Step
Let’s create a very simple project called MagicWindBall that
predicts wind conditions for the day. It’s a play on the words
of Magic Eightball, which is a fake fortune telling device and
I’m hijacking the idea to tell me my wind fortunes.

Start by creating a .NET Core Console project. I’ll use the
dotnet command line tooling, but you can also use Visual
Studio (or Rider, etc.) to create a new .NET Core Console
project.

From the command line, start by creating a new folder with
the Project name, and then create a project in that folder:

mkdir MagicWindBall
cd MagicWindBall
dotnet new console
code .

There’s Nothing New Under the Sun!
“Did you just describe NPM?”

Yup. .NET Core Tools are very much like NPM for .NET Core.

If all this looks familiar from Node,js and NPM—you’re right.
The idea of shared tools isn’t new by any means and follows
various other development platforms and their package
managers. But for .NET to easily publish and share binary
executable tools in a cross-platform manner is relatively
new and opens up the reach of small and useful tools that
otherwise would never be shared.

What Can You Use .NET Core Tools For?
Although .NET Core Tools were initially designed to provide
development time helper tools, they’re just plain .NET Core
executables that can do anything that a .NET Core execut-
able can do. This means you can use it for all sorts of things
that might not be directly developer related.

Here are a few general use cases addressed by .NET Core Tools:

• Build and Development Tools: There are many tools
that follow the original design goal for creating proj-
ect helpers that make development tasks easier or fa-
cilitate external but related development operations.
For example, tools like EF migration commands in dot-
net ef, dotnet watch run, the user secrets manager
and dotnet watch are all .NET Core Tools that fit this
bill. There are many tools available in this category.

• Generic Command Line Tools: If you need to build
some complex command line helpers that work on sce-
narios that are more complex than what you reason-
ably want to do in PowerShell or Bash, a tool can fit
that niche nicely. Because these tools can be shared
and installed easily and are generally very small, they
make a good fit for beyond scripting scenarios.

• Local Servers: .NET Core makes it easy to build server
applications and it’s easy to create self-contained Web
Server or Services applications. Whether it’s running
a Web application locally for testing, or whether you
have some internal application that maybe is a hybrid
using both a Web interface and a desktop application
in mixed mode, a .NET Core Tool makes it easy to pro-
vide this. It’s very powerful to be able to create small
and easily shareable, self-contained Web and server
applications. I’ll show a couple of examples of this
later.

• Desktop Applications: Although Microsoft’s official
documentation claims that .NET Core Tool is meant for
console applications, it turns out that you can also
create .NET Core WinForms and WPF applications and
package them as tools too. But they are Windows-only.

Locating Available .NET Core Tools
One of the reasons that .NET Core Tools aren’t so widely used
that it’s not that easy to find them. Until very recently, you
weren’t even able to search the NuGet Site specifically for
tools but that was recently fixed with new search filters.

There are a couple of other places you can check for tools:

• Nate McMaster has a GitHub repo with a list of many
.NET Core Tools at https://tinyurl.com/natetoollist

• The ToolGet Site searches NuGet with a .NET Core Tool
filter at https://tinyurl.com/toolget

44 codemag.com

Make It a .NET Core Tool
You now have a plain .NET Core Console application. To turn this
into a .NET Core Tool, add a few specific settings to the project
file. At minimum, you need to add a few .NET Core Tool-specific
settings to the project. Add <PackAsTool>, provide a name, and
set up the project to build as a NuGet package, as shown in
Listing 2.

With these flags in place, you can now build the project and gen-
erate the .NET Core Tool NuGet Package into the ./nupkg folder:

dotnet build -c Release

This creates a new project MagicWindBall.csproj that you
can open in Visual Studio or Visual Studio Code. I’ll use VS
Code here, as shown in Figure 1, which makes it easy to
open the projects from a folder via the code . command.

This project is very simple, with an imaginary wind forecast
generator that randomly displays a string from a list of pre-
defined wind condition strings.

The code is along the lines of Listing 1 (full code on GitHub
at https://tinyurl.com/MagicWindBall).

First, let’s make sure the code works as a regular Console
application. Open a Terminal in the project folder and do:

dotnet run

In Figure 1, I use the built-in Terminal in VS Code to test
the application.

Figure 1: Opening and running the Console project in Visual Studio Code.

.NET Core Tools use the existing

.NET tool infrastructure for creation,
publishing, and installing tools.

Using .NET Core Tools to Create Reusable and Shareable Tools and Apps

45codemag.com

If you use Visual Studio, just build in Release mode.

This builds the project and creates a NuGet Package in the
./nupkg folder. You can use the NuGet Package Explorer to
spy into the package to see what’s in the package, as shown
in Figure 2.

Testing the .NET Core Tool Locally
Once you’ve created the NuGet Package, you’ll probably
want to test it locally first before publishing it. You can do
that by installing the .NET Core Tool locally from a folder. To
install, you use dotnet tool install or dotnet tool update.

For public tools that come from the default cloud based
NuGet package store, you use:

dotnet tool install =g dotnet-magicwindball

But…it doesn’t work yet because I haven’t published the
package yet. You can test the package locally by installing
the NuGet component from a folder by specifying the --add-
source ./nupkg command line option:

dotnet tool install -g dotnet-magicwindball
 add-source ./nupkg

Et voila! You’ve just installed the .NET Core Tool locally and
you can now run the tool simply by typing magicwindball

static void Main(string[] args)
{
 WriteWrappedHeader("Magic WindBall");

 Console.WriteLine();

 Write("thinking.", ConsoleColor.Cyan);
 Wait(500);

 Write(" consulting the stars.", ConsoleColor.Yellow);
 Wait(1000);
 Write(".", ConsoleColor.Yellow);

 Write(" guessing some more.", ConsoleColor.Cyan);
 Wait(1000);
 Write(".", ConsoleColor.Cyan);

 Console.WriteLine('\n');

 var rnd = new Random(DateTime.UtcNow.Millisecond);
 var val = rnd.Next(6);

 Console.WriteLine("Wind today be:");

 switch (val)
 {

 case 0:
 WriteLine("No Wind - Skunked again.",

 ConsoleColor.DarkYellow);
 break;
 case 1:
 WriteLine("Light Wind - Pray for wind.",
 ConsoleColor.DarkCyan);
 break;
 case 2:
 WriteLine("Light Breeze - Sucker wind.",
 ConsoleColor.DarkGreen);
 break;
 case 3:
 WriteLine("Breezy- Wake up and get ready.",
 ConsoleColor.Green);
 break;
 case 4:
 WriteLine("Windy- Why are you still here?",
 ConsoleColor.Yellow);
 break;
 case 5:
 WriteLine("Super Nuker– Batten down the hatches",
 ConsoleColor.Red);
 break;
 default:
 WriteLine("Roll the Dice- Coming in waves.");
 break;
 }

 Console.WriteLine();
}

Listing 1: The MagicWindBall Sample Tool

<Project Sdk="Microsoft.NET.Sdk">

 <PropertyGroup>
 <OutputType>Exe</OutputType>
 <TargetFramework>netcoreapp3.1</TargetFramework>
 </PropertyGroup>

 <!-- Dotnet Tool Specific settings -->
 <PropertyGroup>

 <PackAsTool>true</PackAsTool>
 <PackageId>dotnet-magicwindball</PackageId>
 <ToolCommandName>magicwindball</ToolCommandName>

 <PackageOutputPath>./nupkg</PackageOutputPath>
 <GeneratePackageOnBuild>true</GeneratePackageOnBuild>
 </PropertyGroup>

</Project>

Listing 2: Adding Dotnet Tool specific .csproj settings

Figure 2: The .NET Core Tool NuGet Package in the NuGet Package Explorer.

Using .NET Core Tools to Create Reusable and Shareable Tools and Apps

46 codemag.com

for a .NET Component. You use NuGet publish or you can also
use the NuGet Package Explorer shown earlier in Figure 2.

Here’s a build, sign, and publish PowerShell script (the full
script is here: https://tinyurl.com/SnippetConverter):

dotnet build -c Release

$filename = gci "./nupkg/*.nupkg" | `
 sort LastWriteTime | `
 select -last 1 | `
 select -ExpandProperty "Name"
$len = $filename.length

if ($len -gt 0) {
 nuget sign ".\nupkg\$filename" `
 -CertificateSubject "West Wind " `
 -timestamper "..."
 nuget push ".\nupkg\$filename"
 -source nuget.org
}

Note that NuGet Package signing is optional, but because I
already have a publisher certificate, I’m using it to sign my
package. For the nuget push to work, you’ll need to set the
active NuGet publishing ID before you publish the package.

nuget setApiKey <your_API_key>

Figure 4 shows what the published package looks like on
the NuGet Package Store site.

Once published, the package becomes accessible within a
few minutes. Feed listings can take a bit longer, so you may
have to explicitly specify a version on the command line us-
ing the --version flag.

You can now install and run the component from the NuGet
Package Store. Figure 5 shows the install and run sequence.

.NET Core Tools create a platform-
specific executable launched
in a globally accessible folder to
make the tool available globally
from anywhere on the computer.

If you need to update the .NET Core Tool, make your code
changes and increment the version number of the project
then simply re-publish to NuGet. A new package with the
new version number is created and pushed, which then be-
comes available on NuGet. You can then use dotnet tool
update -g dotnet-magicwindball to update the local tool
installation to the updated version.

How a Tool Gets Executed
.NET Core Tools are deployed as .NET NuGet packages that
don’t include an OS specific executable file. Rather, when a
tool is installed, a platform-specific, native launcher execut-
able is generated that acts as a proxy launcher for the .NET
Core runtime, which then bootstraps the .NET Core Tool entry
assembly. The launcher is created in a system mapped .dotnet

into the Terminal from anywhere on your computer. Figure
3 shows building, installing, and running the tool in a Ter-
minal window.

Publishing to NuGet
.NET Core Tools are published as NuGet packages and use the
same exact mechanism you use to publish a NuGet package

Figure 3: Build and run your .NET Core Tool locally.

Figure 4: The published .NET Core Tool in the NuGet Package Store.

Figure 5: Install and run a .NET Core Tool.

Using .NET Core Tools to Create Reusable and Shareable Tools and Apps

47codemag.com

Searching NuGet for Tools

Until very recently,
the NuGet website didn’t
support searching specifically
for .NET Core Tools. This has
been addressed very recently
via a new Filter feature that
you can use on the results
page to filter the result list.
It’s not exactly intuitive
to do this after the search
completes but at least now
you can filter by .NET Core
Tool. Go to: https://nuget.org

For a good and frequently
updated list of many
.NET Core Tools available,
go check out Nate McMaster’s
.NET Core Tool List:
https://tinyurl.com/natetoollist

Figure 7 shows what that looks like inside of WSL. You can
do the same on an actual Linux or Mac computer. Figure 8
shows running on a Mac.

It all works on all .NET Core supported platforms from the
single .NET Core Tool package, as long as your code doesn’t
do anything platform-specific.

.NET Core Tools don’t need
platform-specific builds:
They run on any supported
.NET Core platform from a single
code base and NuGet package.

Listing and Managing Installed Tools
You can check what tools you have installed by using the
dotnet tool list -g command, as shown in Figure 9.

folder and is then globally available using the <Command-
Name> specified by the project. Figure 6 shows the launcher
in the .dotnet root folder and the actual install folder that
holds only the .NET assemblies that execute on any platform.

The .dotnet/.store path holds the actual unpacked NuGet
package content for each tool installed. When you run the
launcher (magicwindball.exe on Windows), it loads the .NET
Core runtime and then calls the static void Main() entry point
in the entry assembly of the package. The .exe you see on the
left in Figure 6 is only a stub launcher. If you hook up an IL
decompiler to the EXE as I’ve done in Figure 6 with Reflector,
you’ll find that the exe is a native binary, not a .NET assembly.

Running on Another Platform: Linux with WSL and Mac
.NET Core Tools are platform agnostic and, assuming your ap-
plication doesn’t use any platform-specific features, they can
run on Windows, Mac, or Linux from a single distribution.

So, let’s run this .NET Core Tool on Linux using Windows
Subsystem for Linux (WSL) using the same steps as before.
Use dotnet tool install and then execute the command.

Figure 6: An installed .NET Core Tool uses a proxy executable to launch the .NET Core Tool.

Using .NET Core Tools to Create Reusable and Shareable Tools and Apps

48 codemag.com

it’s better to use the same name for the package ID and
command and to use the most descriptive name possible.

Keep in mind that tool command names are case sensitive
on case sensitive operating systems.

You can keep tools up to date using the update command:

dotnet tool update -g dotnet-magicwindball

The update command also installs a tool if it isn’t already
installed. You can also easily uninstall tools with uninstall:

dotnet tool uninstall -g `
 dotnet-magicwindball

Example Components
To bring home the utility of .NET Core Tools, I’d like to de-
scribe a few of the .NET Core Tools I’ve created and discuss
the hows and whys of creating them. I’ve been huge fan of
these tools because it’s so frictionless to publish a tool for
easy reuse. If it weren’t for the ease of sharing via NuGet,
I probably wouldn’t have bothered sharing these tools
at all.

Some of these tools I built mainly for myself, but because
I’ve made them public, they ended up getting used by quite
a few other people. Maybe you’ll find some of these useful
as well. But more importantly, I hope it inspires you to share
your own tools no matter how silly or simple—somebody
else might find them useful too!

Simple Tools
The first couple of examples are your typical utility tools
that, under normal circumstances, I would have distributed
as a downloadable installer or just a standalone binary. If
a tool is popular enough, I still go that route in addition
to the .NET Core Tool, but I tend to use the .NET Core Tool
rather than a standalone installed application.

Visual Studio Snippet Converter
This tool (https://tinyurl.com/SnippetConverter) is a small
utility to convert Visual Studio Code Snippets (code expan-
sions) to other development environments. It supports:

• Visual Studio Code Snippets
• JetBrains Rider Snippets

This tool is directly targeted at developers who are already
using Visual Studio and so are very likely to have the .NET
SDK installed just by virtue of using Visual Studio. As a tool,
this is perfect, and it fits the .NET Core Project Tooling use
case that was the original design goal by Microsoft.

The background behind this tool is that I have a ton of Vi-
sual Studio code snippets that help me quickly format blocks
of code—from inserting properties, creating entire blocks
of classes that have complex signatures or inserting com-
plex HTML markup completions for various Web frameworks.
Snippets are an incredibly useful and very underutilized fea-
ture in various IDEs.

I use several different development tools: Visual Studio, VS
Code, and Rider, and sharing snippets across them is much
easier than recreating them in each environment.

The list shows both the Package Id, which is the install
name used with NuGet, and the Command name, which is
used to run the package. Package ID and Command can be
different, as demonstrated by the dotnet-magicwindball
ID and the magicwindball command. But they don’t have
to be different. For example, my LiveReloadServer package
uses the same name for the package ID and command name.
The dotnet- prefix is an original convention used by vari-
ous .NET internal tools to make it obvious that they’re .NET
tools, but that convention is discouraged now. Generally,

Figure 7: .NET Core Tools are cross-platform, here running under Linux in WSL.

Figure 8: .NET Core Tools are cross-platform, here running under Mac in WSL.

Figure 9: Listing installed .NET Core Tool components.

Using .NET Core Tools to Create Reusable and Shareable Tools and Apps

49codemag.com

To run the converter, you can specify a source snippet or
folder and an output path:

snippetconverter `
 "~\Visual C#\My Code Snippets" `
 -o "~\ww-csharp.code-snippets" `
 -m vs-vscode -r -d

To make the snippet location easier to use, the tool lets you
use ~ for the default snippet folders for each IDE. For Vi-
sual Studio, this points to the <Documents>\Visual Studio
2019 Code Snippets folder, for example.

This tool lets me export my Visual Studio snippets into VS
Code and Rider. It also provides me use a “master” snippet
repository in Visual Studio that allows me to update snip-
pets there and then easily update the snippets in the other
environments with the .NET Core Tool.

To use this tool:

dotnet Tool install -g snippetconverter

For options, just run it and it shows the options shown in
Figure 10, which illustrates the functionality best.

Figure 10: A Snippet Converter tool to convert Visual Studio Snippets to VS Code and Rider.

Using .NET Core Tools to Create Reusable and Shareable Tools and Apps

50 codemag.com

.NET Core Tools and
Windows Apps

It’s possible to publish
.NET Core Windows Forms
and WPF applications as
.NET Core Tools with the
.NET Core 3.x SDKs. However,
they’re limited to Windows as
they are obviously Windows-
specific technologies.

Additionally, in .NET 5.0,
the Windows .NET Core
runtimes won’t be automatically
installed as part of an SDK
install as they are today in
the .NET Core 3.x SDKs,
so there’s no guarantee of
the required runtimes being
available in the future.
If that’s the case the utility
of a .NET Core Tool for
these technologies is
somewhat diminished.

htmlpackager https://west-wind.com `
 -v -o /temp/captured/MarkdownMonster.html

This creates a single very large but fully self-contained HTML
file as shown in Figure 12.

There are other options for creating:

• A folder of loose HTML and resource files (-x)
• A zip file of the folder of loose HTML and resources (-z)

Servers
A .NET Core Tool is just a .NET Core application, so you can
take advantage of just about any .NET Core feature, includ-
ing the ability to create self-contained Web server applica-
tions and services that you can run locally.

LiveReloadServer: A Generic Static File Web Server
I frequently run local static websites on my development
computer for quickly running a SPA application, working
on static website content or one of my many standalone
JavaScript library projects.

I could spin up a full development environment like Visual
Studio and IIS Express, or use something like WebPack to
provide infrastructure for hosting and running, but that but
that feels like overkill for many of the simple run and edit
scenarios I have. As an alternative, using the LiveReload-
Server (https://tinyurl.com/LiveReloadServer), I can quick-
ly run a local development server and just run a local folder

Figure 11 shows the source snippet folder and output gen-
erated by the Visual Studio code export:

HtmlPackager
HtmlPackager (https://tinyurl.com/HtmlPackager) is a tool
to package an HTML URL into a fully self-contained “pack-
age” or folder, bringing all the content offline so it can be
viewed completely offline. It’s similar to Save as… in a Web
browser, but you can automate the process. This is useful for
attaching to emails or for archival purposes.

This tool came about because I needed this functionality at
the time for my Markdown Monster (https://markdonwmon-
ster.west-wind.com) editor. I looked around for a command
line tool but came up with nothing that worked that had a
small footprint and no dependencies. As a result, I ended
up building a .NET library that I used in Markdown Monster
initially, but then also built into a .NET Core Tool so it can be
used from the command line and automated.

It’s a general-purpose tool and .NET Core Tooling provides a
very easy way to publish and share it.

The dotnet-htmlpackager tool can be installed with:

dotnet tool install -g dotnet-htmlpackager

Once installed, you can run it using the help command to
see the command line options. To capture a URL, it uses a
command like this:

Figure 11: Migrated code snippets from the Snippet Converter in VS Code.

Using .NET Core Tools to Create Reusable and Shareable Tools and Apps

https://markdonwmonster.west-wind.com

51codemag.com

To use Live Reload Server:

dotnet tool install -g LiveReloadServer

To run it, you simply point it at a --WebRoot folder on your
local computer and that folder then becomes the content
source for the website. Figure 13 shows the LiveReload
server running with requests firing through it.

The Live Reload functionality is enabled by default so you
can edit static text files and immediately see the changes
reflected in active browser pages. If you have Razor Pages
and/or Markdown Page processing enabled, you can edit
Razor and Markdown pages and see those pages refreshed
immediately as well.

Because LiveReloadServer is a .NET Core Tool, it also works
great on Mac and Linux even though I originally built it for
my local Windows set up. After making some very minor ad-
justments for pathing for Mac and Linux support, the server
now also works on those platforms.

By default, the server runs as a local computer Web server,
but it can also expose an external port, so it can also be
used to host externally accessible sites. This is great for
giving network access to other users on your internal net-
work, or for applications that need to expose Web server
functionality. The server binaries can also be hosted as full
Web applications in IIS or other external front end servers
like NGINX, because it’s essentially an ASP.NET Core-hosted
application.

as a website. It’s a small, self-contained .NET Core-based
static Web Server that can serve local static file content out
of an arbitrary folder that you specify. This server can have:

• Local static Web content
• Loose Razor pages (optional)
• Markdown pages (optional)

In addition, it also provides what, for me, is the most useful
feature:

• Live reload of changed content (optional)

The live reload functionality is built-in, enabled by default,
and automatically refreshes any active HTML pages loaded
through the server when an HTML page or any other related
resource like CSS or JavaScript are changed. This makes it a
great, generic tool to use on older non-build process web-
sites or tools you might need to run locally to add function-
ality and make changes.

As a .NET Core Tool, it’s easy to install the server and it’s
very quick to run and start up.

A standalone local Web server isn’t a new idea, as there have
been static Node.js-based servers like http-server (https://
github.com/http-party/http-server) or browser-sync
(https://www.browsersync.io/) forever, but these tools re-
quire Node,js and the standalone live reload tools like Brows-
erSync I’ve used don’t work very reliably. LiveReloadServer
is an alternative and it addresses all these scenarios nicely.

Figure 12: Running HTML Packager against a URL produces a single self-contained HTML file.

Using .NET Core Tools to Create Reusable and Shareable Tools and Apps

https://github.com/http-party/http-server

52 codemag.com

.NET Core Tool Security

.NET Core Tools are essentially
executable programs that are
downloaded and executed
on your local computer.
There’s no review process
for uploaded components,
so there’s potential for
misusing this technology to
install malicious software.

Always make sure you trust
the publisher of a tool.
If that’s not possible, check
for an open source repository
to review the source code and
the issues around the project
to verify that the project
is legitimate and secure.

Practice safe computing—
better safe than sorry!

lot of existing applications that use large FoxPro code bases,
haven’t been updated, and just keep ticking along. These
tools have been kept current and continue to allow these an-
cient applications to keep working without major disruption
or requiring complete re-writes on other platforms for which
there is often no budget, technical skill, or incentive.

Web Connection has, for many years, used .NET technologies
to provide the interface between a Web Server (IIS only in the
past) and FoxPro and the tech using .NET and COM (ugh) is
surprisingly stable and reliable. So, when .NET Core came out
a few years ago, it offered several new opportunities to ex-
tend the Web Server interface tooling Web Connection imple-
ments by:

• Providing a fully self-contained development server
• Providing a nearly zero configuration environment
• Its ability to run the server component on non-Win-

dows computers

A Legacy Web and Application Server
The final example is for a legacy application server running as a
.NET Core Tool. It’s for an ancient integration tool that has recent-
ly been updated to .NET Core as an option. I maintain a FoxPro
legacy product called West Wind Web Connection that still has
many users—for nearly 25 years now. This is as legacy as it comes,
and you may laugh at technology this old, but it’s still in use.

Because the tools I created so many years ago extended Fox-
Pro functionality to build Web applications, there are still a

Figure 13: LiveReloadServer generically serving Web content out of a local folder.

LiveReloadServer is a simple,
generic local Web server
you can point at a local folder
to host a website.

Using .NET Core Tools to Create Reusable and Shareable Tools and Apps

53codemag.com

The internal server implementation is very similar to the
Live Reload server but extended to handle the Web Con-
nection server protocols so it can handle Web Connection-
specific script handling and request routing that lets FoxPro
server code execute in response to Web requests. The .NET
Core implementation was moved from a .NET HTTP Handler
to .NET Core Middleware, and it was surprisingly easy with
95% code reuse from the existing handler.

Legacy technology is always an eye roller, and I doubt that
any of you will use this technology, but it makes for an in-
teresting use case of the .NET Core Tool functionality in a
very unconventional scenario.

Summary
.NET Core Tools provide a great way to share executable code
from .NET Core in an easy and platform-independent way. If
you’ve built a NuGet package and published it before, you
already know how to build and share a .NET Core Tool. .NET
Core Tools are easy to consume, which gives access to a va-
riety of existing tools and, because they’re so easy to share,
promote a community of tools to be created.

Hopefully, this article has given you some ideas of tools that
you might want to use, or better yet, create and share your
own with the community or even just within your organization.

• Its ability to run a local computer or network server
without requiring IIS

• Its ability to run truly local Web applications like desk-
top applications

Long story short, a .NET Core Tool turned out to be great
delivery mechanism for someone who needs to run an old
application that was built with Web Connection, but doesn’t
have access or can’t install IIS on a computer and most of
all, who doesn’t want to set up and configure IIS.

This sounds strange, but it’s a very common scenario: A
user calls and says they have a Web Connection application
that was developed 15 years ago, the developer left, and
they need to run the application and perhaps make a few
changes. Setting up an environment in the past wasn’t the
easiest thing in the world. With this new component, I can
whittle that down to:

• Install the .NET Core SDK.
• Install dotnet tool install -g WebConnection.
• Point at a Web Connection folder and go.

A .NET Core Tool here offers a smooth solution to distribute
a server that can then be used to serve an ancient legacy
application without complex configuration or special instal-
lations required. On the local computer, it’s literally: point
at a Web Connection application folder and go—no further
configuration is required. The same server implementation
can also be deployed in a live environment with IIS.

Figure 14: WebConnectionWebServer running a FoxPro server application through .NET Core.

 Rick Strahl

SPONSORED SIDEBAR:

Get .NET Core Help
for Free

Looking to create a
new .NET Core project?
Get off on the right foot
with a FREE hour-long
CODE Consulting session.
No strings. No commitment.
Just CODE. Our consultants
have been working
with the .NET Core and
ASP.NET Core teams since
the early pre-release builds.
For more information,
visit www.codemag.com/
consulting or email us
at info@codemag.com.

Using .NET Core Tools to Create Reusable and Shareable Tools and Apps

www.codemag.com/consulting

Talk to an RD

Markus: Do you use Surface Hubs in your
organization?

Dr. Neil: I’ve been using Surface Hubs, but I sus-
pect they’re all switched off right now since no-
body is in the office. But I’m very, very fortunate.
I have a Surface Studio on my desk, which is a
beautiful device. A lot of the teams that I work
with have Surface tablets, Surface Pro, or Surface
Books. Or a Lenovo tablet that has a pen or an
iPad with a pen. Microsoft Whiteboard runs on any
Windows device and on iPad. If you have a pen,
you get the extra bit of nice functionality where
you can engage. I think the other nice thing
about Whiteboard is that, as different people are
scribbling on the same whiteboard at the same
time, you see their little icons popping up all over
the screen so you can track who’s doing what.

You can see a bigger picture emerge as multiple
people are scribbling down. You can divide the
page into columns and people can enter stuff in
their own columns, or however you want to do it.
You can create notes and move them around on
the page. I found that to be a very useful free-
form tool in the same way I’ve always liked hav-
ing a whiteboard in a working space when I’m in
the same room as someone. It encourages that
wider conversation. I think sharing screens fluidly
and being able to share screens among different
people in the conversation is also very powerful.
People want to share, whether it’s a new UI they’re
designing or they want to have a conversation
around some plan they’ve put together. Just being
able to do that in Teams has been powerful.

Bringing in guests is also very powerful. Knowing
that you can lock MS Teams down to people within
your organization, but you can have teams where
you can bring in guests in a controlled fashion is
another aspect of it. There are lots of pieces of
the puzzle that connect together to make a very
useful toolkit that MS Teams has presented.

Markus: I believe you can use the Whiteboard
product whether you use Teams or not, is that
correct?

Dr. Neil: Yes. The Whiteboard product isn’t attached
to Teams. It’s a separate product. It’s attached to
Active Directory. Most of the organizations I work

The Microsoft Regional
Director Program
The Regional Director Program, or RDs for short,
is a program that allows Microsoft to identify
influential individuals in an effort to give the
community-at-large access to these individuals,
and also to provide a point of communication
and feedback into Microsoft. Regional Directors
do NOT work for Microsoft (and they aren’t
paid for being part of the RD program), but
they have a formal relationship with Microsoft
that provides them with great insights and
connections within Microsoft.

The Microsoft Regional Director website
(https://rd.microsoft.com) defines the RD
program in the following words:

“The Regional Director Program provides Microsoft
leaders with the customer insights and real-
world voices it needs to continue empowering
developers and IT professionals with the world’s
most innovative and impactful tools, services,
and solutions. Established in 1993, the program
consists of 160 of the world’s top technology
visionaries chosen specifically for their proven
cross-platform expertise, community leadership,
and commitment to business results. You will
typically find Regional Directors keynoting at
top industry events, leading community groups
and local initiatives, running technology-focused
companies, or consulting on and implementing
the latest breakthrough within a multinational
corporation.”

Regional Directors are expected to have deep
technical understanding of many of the Microsoft
technologies. Not just that, but RDs are expected
to have an understanding of, and experience
with, competing technologies. RDs are also
expected to go beyond technical expertise and
have considerable business expertise. Many RDs
present at corporate events, advise governments
and NGOs, and many similar scenarios.

Feel free to contact any of the Regional Directors
to get access to an RD’s expertise and a well-
informed opinion that isn’t shaped or influenced
by having to go along with Microsoft’s marketing
speak. You can contact RDs to get advice and
opinions on your projects regarding technical
needs. You can contact them to help analyze
how technology will influence your business.
You can invite RDs to speak to your project
stakeholders, board of directors, or corporate
event. And you can contact your RD for many
more scenarios.

Dr. Neil Roodyn and
Markus Egger

with are enterprise-scale organizations. They have
their own Office365, so we’re working with those
on the inside of their firewall, logged in as an AD
under their domain.

Markus: Overall security is pretty good with all
that stuff, right? I mean, looking at Teams and
the security that it has compared to some com-
petitor products that have made big headlines
lately with various security problems. It’s always
nice to know that in Teams, security works well.
Also, most people already have a license for it be-
cause it’s part of Office.

Dr. Neil: Right. Microsoft made a big move to
make it free for everyone during this period. So
that’s made it useful too, in that if I have a team
that’s not necessarily hooked into the Microsoft
ecosystem, I can add them as guests into my do-
main and bring them into conversations.

The security aspect, certainly within a domain
within an organization, is incredibly important.
Because there’s a lot of these conversations you
don’t want getting outside of the firewall, right?
In the situation we’re in due to COVID-19, we
need to be able to have senior leadership con-
versations that you normally would have behind
closed doors in a boardroom. You need to do
them virtually. You need to be sure that they’re
secure. You want to have an environment that
you’re 100% comfortable in.

And there are other aspects too, like knowing that
something is recorded. You can see a little dot on
your screen right now because I’m recording this
call. It’s also important knowing that something
has been captured or isn’t being captured. It’s
just extra transparency and extra information.

Markus: I know you’re also very interested in ap-
proaching software development with security in
mind and as a driving factor.

Dr. Neil: It’s what I’ve started calling “Security
Driven Development,” copycatting the Test-Driven
Development that I started pushing 20 years ago
when I was doing all the XP [eXtreme Program-
ming] drive, trying to get people into XP and Agile,
and thinking about how to put quality first. One of
the things that surprises me a little bit in the last

In this “Talk to an RD” column, Markus Egger and Dr. Neil Roodyn continue their
virtual conversation about the impacts of the COVID-19 crisis. Both are involved with
managing teams that are now working remotely more than before. Both are involved
with customers facing the same issues. This discussion focuses on security issues.

54 Talk to an RD: Dr. Neil Roodyn and Markus Egger codemag.com

Whatever platform you’re on, go and find out what
the security best practices are and read them, and
make sure you understand what they’re trying to
tell you, because none of them want to be the
platform that exposes, you know, seven million
customer records because you did something silly.
[laughs] These platforms have a vested interest in
supporting your efforts to be secure.

The second thing is that, again, in this day and
age, there are a huge number of online courses
that are free or very cheap. You can go to LinkedIn
Learning, or Pluralsight, and you can find a ton
of really good security courses for your language
and for your platform. If you’re programming in
Java, C#, or C++. It really doesn’t matter. You’ll
find security training in that language. If you’re
building stuff for IoT on little microchips and ship-
ping 10 million of them around the world, you’ll
find a course that teaches you how to secure those
devices. There’s no shortage of information.

To some degree, that’s why I was a little bit
shocked to start discovering that a large num-
ber of developers weren’t really thinking about
security first. They were stuck on this cycle of fea-
tures. I understand why; it’s because the business
is driving them to build features. The reality is
that they have to think about security first and
that was crossing all kinds of industries that I’ve
stuck my finger into in the last decade—from the
finance markets through to logistics and shipping

I’ve been doing a bunch of work helping people
understand. None of it’s really that complicated.
But you must understand how to make sure that
they’re using best practices from the start and not
going “oh, well, we’ll use HTTPS to start with, and
then we’ll retrofit some other security stuff on top
of that.” It’s not breaking news, but HTTPS isn’t
super secure. And if you’re passing information
that’s critical to your business, maybe you want
to think about not just encrypting it yourself, but
also validating the source and the destination
and other places you’re expecting them to be. You
can do that with certificates, with signing, and a
whole bunch of tech that’s already out there. It’s
not very hard to get your head around, but you
have to plan to do that from the beginning.

Markus: Do you have any pointers? Are there any
books or articles people should read or anything
like that?

Dr. Neil: I think there are a few things and it re-
ally depends on what your platform is and where
you’re going. The great thing about this time that
we live in is that security is front and center for
all the big platforms. So whether you’re on Ama-
zon and AWS, or you’re on Microsoft and Azure, or
you’re on Google, they all have great documenta-
tion on the security aspects of their platform and
how to make sure the products that you’re build-
ing on their platforms are secure. You really don’t
have to dig very hard to find that documentation.

year or so was how many developers don’t really
think about security stuff. They’re very feature-
focused and want to deal with security later.

The problem with dealing with security later is
the same problem you have with dealing with
quality later. You can build something that’s
very hard to secure. If you build something test-
driven, it’s very hard to build something that’s
not high quality because you’re building it so it’s
testable. If you build something security-driven,
it’s very hard to build something that’s not se-
cure because you’re building it with security in
the forefront of your mind.

There’s a lot of this kind of change of attitude that
needs to happen. Especially as more developers
are building greater scaled applications that of-
fer services. You think of the architectures we’re
being encouraged to move our world into, of mi-
croservices, or treating the cloud as just a place to
host functions that you can call. These are all great
ideas, but you have to make sure that you’re not
breaking security. “Oh yeah. We’ve got this new
service that, you know, exposes all this customer
information that you can call.” That’s is great in-
ternally. And then you wonder who else can call it.
“Oh, anybody.” And that’s not good. [laughs]

Well, let’s lock that down. You have to think about
that from the beginning. You want to make sure
that there’s good authentication and validation.

In this feature, we eavesdrop on a conversation between Dr. Neil Roodyn and Markus Egger, both seasoned Regional Directors.

Dr. Neil Roodyn has long had a passion for software development, going
back to the 70s when he taught himself BASIC and 6502 Assembler. In the
90s, Neil worked on a number of different real-time systems that led to a
thesis entitled “Software Architectures for Distributed Real-Time Systems.”
Neil was awarded a PhD for this thesis from University College London and
the brand of Dr. Neil was born. Since 1995, Dr. Neil has been involved in the
formation of many software companies, his roles varying from mentoring
through to directorship. Dr. Neil keeps a very active involvement in the
software being produced and delivered today, and provides feedback
to both large and small companies on how to increase the value of their
software business.

Markus Egger is not just an RD, but as the founder and publisher of CODE
Magazine, he’s also directly associated with this publication. In his main
job, he is the President and Chief Software Architect of EPS Software Corp.
(a company better known for its CODE brands such as CODE Consulting,
CODE Training, CODE Staffing, and CODE Magazine). He is also the founder
of other business ventures, such as Tower 48, Wikinome, and others. In his
own words, he spends his time “like most software developers, writing
production code” both for consulting and custom app-dev customers,
and also for his own companies. He has worked for some of the largest
companies, including many Fortune 500 companies, such as Microsoft.
Markus often takes on the role as a “CTO for hire.”

Talk to Dr. Neil about:
Software development, cloud computing,
More Personal Computing, cognitive services,
bots, conversation as a platform, true social
computing, robotics, quantum computing,
the economic singularity, and the future.

Talk to Markus about:
machine learning and AI, ASP.NET, HTML apps
(including Angular, Vue.js, etc.), the cloud,
Azure, Microservices, Windows applications,
software strategy, and much more.

You can contact him at markus@eps-software.com

55Talk to an RD: Dr. Neil Roodyn and Markus Eggercodemag.com

codemag.com

centralized Identity. Right now, you think about
identity for everything we do. Let’s say you log
onto Teams; you log on with your username pass-
word, and maybe you use multifactor authentica-
tion or two factor authentication and get a thing
that comes up on your phone and you say, “yes,”
and you’re in and that’s great. But who owns that
identity? Well, now it’s a Microsoft identity, or it’s
an Active Directory identity, or you log into Gmail
and it’s now a Google-owned identity, or you log
into your Amazon admin portal and you’re now
on an Amazon identity, or you log into your Ado-
be tools and you’re now on an Adobe identity.

It’s like, “wait a minute!” How many identities did
I just roll off? Like five, six? And you have all of
those, right? I’m sure you do. I’m sure most people
have this huge number of identities. Oh, and you
also have a government identity. When you log
onto your driving license or to pay your taxes,
that’s a different identity. So you just start think-
ing “wait a minute, there’s something really wrong
with this picture!” Well, there are multiple things
wrong with this picture [laughs], but the first one
is that most of them are still relying on a username
and password. And 20 years of doing this makes
me feel like this really isn’t right anymore. The
other thing is that you’re now giving ownership of
the identity of who you are, in different aspects of
it, to different people, not yourself. You no longer
own your own identity in the Adobe cloud. You no
longer own your own identity in the Amazon cloud.

The compliant way of thinking
about it is blockchain or
ledger-based identities.

Could we change it? Can we turn the whole thing
on its head and create a world where you own your
identity and you decide which parts of it you want
to give to different people? You then say, “oh, well,
for my health records, obviously, I want this part
of my identity, like my date of birth, my address,
my next of kin.” Whatever. Those kinds of things.
That’s part of what you share with your health iden-
tity, but you still log on as the same person when
you go to Adobe. They don’t need to know anything
about any of that stuff, right? Maybe they need to
know your billing address, but they don’t need to
know your next of kin or your date of birth.

You might share a different set of components,
but it’s the same identity. That’s this concept of

you’re going to send it somewhere else, you’re kind of
out of the realm of them worrying about it. If you’re
using their messages, the cloud messaging protocol
that they’ve provided, maybe you’re secured again by
what they’re providing. But I think the other thing
is to make sure you understand what they’re provid-
ing. If you’re using some messaging system hosted
on a server somewhere hosted by Amazon or Micro-
soft, understand what they’re providing as part of
that. Even just the fact that you’ve gone and read and
understood, means you’re now getting a bit more of
your head around the concept of what security means.

When they say something that you don’t under-
stand, go and look it up! Hopefully you then under-
stand a bit more about that aspect of the security.
I always recommend to everyone that they investi-
gate what’s currently provided, even if they’re using
a standard cloud platform provider. But the other
thing I often say is “don’t trust it.” You want to
make sure that it’s secure as far as you’re concerned
or not only secure as far as they’re concerned. And
if you want to be the one who’s comfortable with
security, maybe you need to add something to that.
Maybe you need to add a level of encryption or a
level of validation. If the only server that’s allowed
to send you this kind of information is this or that
server, sign it or have a certificate that’s on that
server. Then you know it came from the right server
and it can’t come from somewhere else.

Markus: I’d imagine you’re still an advocate of
not home growing your added solution. You go
with certain standards and encryption mecha-
nisms and standard signing and so on.

Dr. Neil: Absolutely! I don’t want to invent a new
security protocol. Absolutely not. At the same
time, I don’t think a lot of what comes out of the
box is necessarily the best thing. Like, I think a
lot of the certificate signing is still 2048 [bit en-
cryption], and really, we probably need to go up
to 4096 now. You may just want to flip that switch
so that you’re using a slightly harder-to-crack set
of tokens. But yeah, I do think that you should
first understand it and then use the tools to make
sure you’re making the security harder to crack
and harder for someone to access the data.

Markus: How do you deal with sign-on and IDs
and accounts and all that?

Dr. Neil: [laughs] That’s a super interesting con-
versation because identity is core to everything
we’re doing. One of the things I spent a bunch of
time on last year is looking at different identity
solutions. Also digging into this concept of De-

through to property management. It’s every-
where. I think if your goal is to build a product
that is a global-scale success, if you’re trying to
build a product that’s gonna make you the next
Apple, Microsoft, Google, Facebook, whatever,
you have to think about these things. And it’s
true even if you’re building an internal product.

I guess the other thing that’s really brought a lot
of this to the fore, is horrific legislative activities,
like GDPR. Suddenly everyone’s going “The what?
What do we have to do? What do you mean we can’t
sell our product in Europe anymore?!?” In many
ways, for as much as I hate all the bureaucracy,
I think it’s done everyone a big favor in making
them think about what personal information is.
What is this data that I’m transferring among 50
different servers? What does it mean? How am I
transferring it? Is it accessible to other people? I
think there are a number of factors that have come
into play. The whole GDPR conversation is what’s
also driven a lot of these security courses online.

Markus: How much does moving onto one of those
clouds help you with that? Some of the cloud stuff
forces you into that, doesn’t it? You put up a SQL
Azure database and you don’t have quite the free-
dom to mess up security as you did before. But it’s
not automatic by any stretch of imagination.

Dr. Neil: No. And you can break it. [laughs] There
are some defaults that all the clouds, whether it’s
Amazon or Microsoft or whoever, give you that
are definitely more secure than you would be than
if you had just gone and installed SQL Server on
a box and connected it to an Internet connec-
tion and started serving up data to your website.
There are some defaults that they’ll set up and
there are also some flags that they all give you.
They give you a little flag saying “Warning. We
don’t believe this is secure. You should not use
this technique. Using this other technique is our
recommendation.” Not that they actually prevent
you from doing it wrong. You can go and con-
figure it how you want and it could be insecure.
But the flag is there. And every time you log into
their portal, you’ll get this alert: “Your SQL server
is not considered to be secure the way we would
like it, or the way we would recommend it here.”`

Markus: Or they might even send you an email.

Dr. Neil: Yeah. “Click this link to see our recommen-
dations.” There is definitely a base level of value you
get from that. But then you get to code you’ve writ-
ten and you’ve pulled that data out of the database,
and now you’re going to manipulate it somehow, and

56

TALK TO AN RD

Talk to an RD: Dr. Neil Roodyn and Markus Egger

codemag.com

payment because they’re a business of some sort.
They’re looking for ways to gain revenue out of this.

Markus: Who would be the clearing house for
that? Or who provides the API so companies like
Adobe could integrate into that? If you’re talk-
ing about entities like Microsoft or Google, now
we’re almost back to a blockchain-based version
of Microsoft Passport.

Dr. Neil: I think there are two aspects to it. You
just brought up two completely different terms.
One was “clearing house” and then “APIs.” I think
the whole point of this is that there’s no clear-
ing house anymore. Everybody acts as their own
clearing house to a certain degree. You validate
what you want to have shared from your ledger
with other people. You are the person who owns
your identity. The API is a different aspect. I’m
sure that over time, this would evolve and there
will be Microsoft APIs and Google APIs and Ama-
zon APIs for ledger-based identity or certificate-
based identity or however it ends up being
mushed together. But I think the concept of a
clearing house is what disappears as part of this.

I’m not convinced that we’re
taking the right route in trying
to lock everything down.

I think there’s a whole other aspect of this identi-
ty security conversation. It’s probably controver-
sial, but I’m not convinced that we’re taking the
right route in trying to lock everything down. The
concept of privacy in the modern world is quite a
modern concept. If you think about us as ancient
human beings living in small tribes, there wasn’t
really a concept of privacy. I’d know exactly who
you were sleeping with and what you were eat-
ing, because there are only 37 of us in the tribe.
[laughs] The concept of privacy in a tribal world
is kind of bizarre, actually. A lot of cultures never
even contemplated privacy as a thing that was
a right or even desirable. Everyone knew what
everyone else was up to and you knew straight
away that the guy over there is a jerk because
it was obvious because everything was out in
the open.

You still see this a little bit in cultures that have
small communities. I was kind of shocked about this
the first time I went to countries like Finland. I went

Dr. Neil: Yes. And you could do all of this with
certificates, as well. Let’s say that I have an cer-
tificate issued to me and Markus says “oh, I trust
what Neil says about a member of staff who used
to work with Neil” and I’ve signed something and
validated that the person was a good developer
and worked with me and I really enjoyed it and
I’ve signed it. There are a lot of these kinds of
things that start to become super interesting.
We’d have to get to a point where we could enable
people to really carry identities in a digital form.
Right now, that probably means on their phones.
You’d carry your identity with you wherever you
go and be able to share different aspects of it on
different systems with different people.

Markus: Do you envision that will be a completely
new blockchain, or could it reuse something like
an Ethereum blockchain?

Dr. Neil: There are lots of different projects afoot
right now. And if anyone’s interested, they can
go and look them up, but there is one based on
Ethereum. There’s one based on what you might
call the “Bitcoin blockchain.” Microsoft has a re-
search project called “Ion” that’s kicked off.

I think what needs to happen, to be of real value, is
it needs to be disconnected from coin. The problem
with the ones that are connected to coin, in my
view, is that then it becomes a pay-for-use scenar-
io. Obviously, they’re motivated by coin-spending.
In order to validate someone to sign something, or
to do something of that kind of activity, you pay a
price. I’m not sure that’s correct. I don’t necessar-
ily believe you can scale that. If you were going to
have hundreds of millions of transactions happen-
ing every minute on the Internet, does it makes
sense that there’s a coin value attached to every
single time someone logs onto a website to do on-
line shopping? I think that the future of it needs to
be disconnected from any coin-based blockchain
and needs to be independent. There are a few al-
ready starting to pop up that are doing this.

Markus: It makes total sense. There’s no reason why
a blockchain would need to be coupled to a coin.

Dr. Neil: The ones that have coin were quite quick
to adopt it because they already have the infra-
structure.

Markus: You could just use an Ethereum-based
blockchain for this.

Dr. Neil: Exactly. You don’t need to have coin at-
tached to it, but of course the platforms require

trying to create a decentralized identity solution.
The buzzword-compliant way of talking about it
is blockchain or ledger-based identities. That’s a
technique that you could use to create this decen-
tralized identity, but it definitely seems like an in-
teresting way forward and a way out of this multi-
identity problem and this lack of consolidation to
who you really are. The great thing is that if you
were to do this, you could start getting crossover.
Say, for example, I want to buy a domain and get a
certificate on Azure. Well, how do they know that
it’s really me? At that point, I could share my gov-
ernment identity with them with the same identity
that I’m already logged in with and say, “here’s my
driving license and here’s my passport number and
you’re allowed to use it for the next two days in
order to issue me with my own domain and my own
certificate for that domain.” And then it disap-
pears from their data. I’m giving permission to use
this for a period of time and then it gets revoked.

These kinds of concepts are technically very feasible
now. I’m keen to try to work out how I can start help-
ing organizations think about using a more decen-
tralized identity within their environment. Because
I think that this would enable a much richer digital
conversation to start happening between systems.

Markus: So how do we all imagine this? We were
talking about things like blockchain, but I’m as-
suming we’re not just talking about blockchain-
style technology that sits on a server, but we
would have a very large distributed set up. Al-
most like Bitcoin using blockchain?

Dr. Neil: Yeah. It has to be a set of distributed
ledgers that capture the different aspects of what
we’re all doing.

Markus: Blockchain would mean it’s trustworthy.
It’s not changed and so on. It’s not fake. But how
do you give it authority in the first place?

Dr. Neil: You’d have authorities in the ledger. The
Australian government or Hawaiian state govern-
ment are examples of such authorities. Or you
may have the department of driving, or you may
have hospitals with certain authorities. You can
specify what authorities they have in order to be
able to carry out certain actions. Or to be able
to add something to the chain or to your ledger
saying, “this is Markus and yes, this is his driving
license as issued by Hawaiian driving.”

Markus: There would be other entities that would
have the ability to add or allow you to add to it and
sign it in some way to know it’s actually for real.

57

TALK TO AN RD

Talk to an RD: Dr. Neil Roodyn and Markus Egger

codemag.com

it here in Australia and you’ve been dealing with
it in the US. We have the same problem here in
Australia where we have a very high percentage
of indigenous people locked up in prisons com-
pared to the overall percentage of the popula-
tion. There’s clearly something broken with that.
I think that’s partly because of the lack of trans-
parency in the whole system. You can look at this
almost throughout the entire world. In some
places it’s a little less so and somewhere it’s a
little more so, but we’re certainly seeing some-
thing that’s a systemic problem worldwide and
hopefully we’re seeing a change. Something will
have to change there.

Markus: That’s actually a very interesting philo-
sophical discussion.

Dr. Neil: Yes! I am not sure how fitting this is for
an RD column, but it’s super interesting. The soci-
ety that we live in globally is built on the history
that made it how it is. We have to accept that part
of history involved some pretty horrible things.
Like slavery, like genocide, like the capture of
countries that didn’t belong to the conquerors.
Let’s face it: The British empire was created be-
cause they had guns and the other people didn’t.
We have to really understand how we got to this
point before we can come to solutions.

This goes all the way back to Roman society. It’s
not hugely surprising that a lot of legal systems
around the world are based, at some level, on Ro-
man law. That’s because the Romans worked out le-
gal mechanisms that justified their ability to build
an empire, take over countries, capture people,
turn them into slaves, give them mechanisms to
become free, have earnouts. These are all concepts
that are intrinsic to our behavior and our society.
So yes, this is not an easy “let’s turn this switch
over to six and we’ll be fixed” type of situation.

Markus: This is a pretty heavy conversation for a
coding magazine.

Dr. Neil: (laughs) It is. It’s something that needs
to be discussed everywhere. Nothing can change
until we see what’s happening, whether it’s in our
code or our society.

Markus: True. Thanks for meeting with me. I’ll be see-
ing you online or at a conference sometime.

Dr. Neil: It was fun. Thanks!

eryone to know about your family life. You take
your kids to a certain school and you don’t neces-
sarily want everybody to know where your kids are
at all points in time in order to protect them. Then
it takes on a little bit of a different dimension.

Dr. Neil: It does. Except if you know where all the
stalkers are all the time, then maybe that’s less of
a problem. [laughs]

What I’m saying is that I think if you really want
to solve this, you either go all the way to abso-
lute maximum security. Everything is locked down
and nobody really knows who anybody is. Or you
go all the way to complete transparency, where
there is nothing hidden at all. Then if I want to
know where someone was at some point in time,
it’s there. It’s the in-between that we have the
problems with, where some people are more
anonymous than others. And some people’s ac-
tivity is more hidden than other people’s activ-
ity. I think that’s where a lot of these challenges
start. Well, how is he allowed to be secret about
it? I’m not secret about it.

If you are an amateur money launderer, shall we
say,…

I think just the same with money laundering. Like
if you’re an amateur money launder, shall we say.
And I know this because I used to work...

Markus:
...as a money launderer? [laughs]

Dr. Neil: [laughs].

Markus: Where do we go with this? We may be
going somewhere that you don’t want the world
to know. [laughs]

Dr. Neil: [laughs].I used to work in financial sur-
veillance. I used to look for bad patterns of behav-
ior and movements of money. There are some in-
teresting things that you learn when you do that.
One of them is that people who know what they’re
doing are never going to get caught. The people
who generally get caught for doing silly things
with not paying taxes or whatever, are people who
don’t understand what the rules are or don’t un-
derstand in general. So what I’m really saying is if
you’re good at hiding it, you can hide it.

That means it’s different rules for different peo-
ple. What I’m saying is if you went to complete
transparency, you break all that down. We’re
dealing with this right now. We’re dealing with

to Helsinki and was amazed at just how safe it was. I
used to joke that in a park in Helsinki, you could put
your laptop down, go for a walk for 10 minutes, get
your coffee, walk back, and your laptop would still
be there. I remember once asking a Finnish person
about it and she said, “yeah, absolutely.” Because if
so-and-so steals your laptop, everyone in the whole
town knows it was him by tomorrow.

Anonymity removes accountability and the online
world has pushed that to the extreme.

Markus: Anonymity removes accountability and
the online world has pushed that to the extreme.

Dr. Neil: Yeah. The online world has created this
extra level of anonymous behavior and anony-
mous activity. And maybe the solution is to get
rid of all of that and make everything incredibly
transparent.

Markus: But then doesn’t that go counter to your
security-driven development?

Dr. Neil: Absolutely! [laughs] That’s why I think
it’s interesting! Because I think there are two
ends to this scale. You either go to everything
being totally locked down or you go to nothing
being locked down. It’s the in-between that we’re
stuck in that’s so troublesome.

Markus: Then perhaps we should put everyone’s
behavior into a blockchain. You can look up all
the bad stuff someone did. You know, Big Brother
to the max!

Dr. Neil: You’re not the first to suggest this.
[laughs] Some people would say this is highly re-
strictive. You’re now observing my every behavior.
What are you doing wrong that you don’t want to
be observed? And you have to ask: “why do you
need to be anonymous if you’re not taking bad
action?” Are you embarrassed by your activities?
You don’t want to let people know that you went
to that website. Well, why did you go to their web-
site? Maybe you should think about that a little
bit more and not go to that website. Let’s, for
the sake of the conversation, say it’s a gambling
website. I know that wasn’t what you were think-
ing. [laughs] So maybe you shouldn’t have gone
to that gambling website. If you’re embarrassed
about going to that gambling website, you should
have thought about that a little bit harder.

Markus: That’s true. On the other hand, it could
also be a completely different matter. Maybe you’re
a person in the public eye and you don’t want ev-

58

TALK TO AN RD

Talk to an RD: Dr. Neil Roodyn and Markus Egger

 Markus Egger

59codemag.com Blockchain: A Practical Application

ONLINE QUICK ID 2011081

Blockchain: A Practical Application
This article is a practical application of Wei-Meng Lee’s May/June 2018 article: Understanding Blockchain: A Beginner’s Guide to
Ethereum Smart Contract Programming (https://bit.ly/3i2fu2C). Of all the most talked about and hyped topics in technology
today, blockchain is at the top of the list. Almost without exception, the terms blockchain and crypto currency are used

Figure 1: A block is a data container that
also includes the hash of its data.

John V. Petersen
johnvpetersen@gmail.com
linkedin.com/in/johnvpetersen

Based near Philadelphia,
Pennsylvania, John is an
attorney, information
technology developer,
consultant, and author.

interchangeably for the basic reason that crypto currencies
are based on blockchain. But not all blockchains are crypto
currencies. It follows that we can discuss and implement
blockchain independently of crypto currencies and the peer-
to-peer networks within which the blockchains that are cen-
tral to crypto currencies reside.

None of that resolves the basic question: What are blocks
and block chains? What does one look like? Assuming there’s
some value with them, does blockchain, as a concept, apply
to your applications? If so, which problems can be solved with
blockchain and how would you implement those solutions in
your applications? To answer those questions, you need a
tangible proof of concept that makes concrete what has previ-
ously been largely an abstract concept. In this article, I tackle
these questions with a tangible blockchain proof-of-concept.

Although this article endorses blockchain and despite refer-
ring to the crypto currency context, it’s not an endorsement
of crypto currencies. If there’s one thing to take away from
this article, it’s that although blockchain and crypto currencies
are related, they are in fact, quite distinct things. Crypto cur-
rencies are still in their infancy and have had their fair share
of problems. Whether crypto currencies succeed or fail, that
has no bearing on blockchain’s efficacy. Editorially speaking,
despite the hype, I don’t see crypto currencies as a viable long-
term thing. That conclusion is based on several factors:

• Acquisition difficulty (at least in the USA)
• Association with nefarious activity
• Uncertain recourse when something goes wrong
• Not immune to theft
• General uncertainty and risk concerns

With a few strokes of the legislative pen, crypto currencies as a
form of anonymous payment could very well be outlawed. Who
are the only people that place a premium on anonymity in fi-
nancial transactions? Terrorists, money launders, drug dealers,
and sex traffickers, to name a few. No legitimate activity re-
quires crypto currency. Despite the issues with crypto currency,
those issues should not and do not detract from the benefits of
blockchain, the primary enabler of crypto currency.

The code for the proof-of-concept discussed in this article
can be found here: https://github.com/johnvpetersen/Block-
Chain. Note: because this is an active repository, although
conceptually consistent, there are some deviations with the
implementation details. It’s baked enough to discuss, but this
project is very much a work in progress. The goal is for you
to take what I’ve started and make it useful for your specific
use cases.

A Quick Word on Encryption
For the purposes of this proof-of-concept and article, data at
rest isn’t encrypted, but it could be. Encryption, however, is a
separate concern. If data within a block is encrypted, it’s the
responsibility of another facility to decrypt and read the block

data. Perhaps that would call for an IBlockReader interface? Per-
haps that interface has a generic method that accepts a JSON
string that was generated from the block’s ToString() method?

What Is a Blockchain?
Blockchain isn’t a technology or a third-party service for
which you need to purchase a seat. You may have heard the
phrases “distributed digital ledger” and “smart contracts”
in the context of decentralization and crypto currencies like
Bitcoin. Blockchain is the foundation of distributed digital
ledgers and smart contracts. Distributed digital ledgers have
been compared to a spreadsheet that’s replicated and synced
via nodes that are connected via a peer-to-peer network. A
smart contract is a program that manages the protocol coor-
dinating actions that are incident to some legal obligation.
An example of such an obligation is the requirement to pay a
sum of money in return for a product or service. Blockchain
is at the core of it all. The specific programs that implement
blockchain and the network those programs reside on, those
are things I’m going to put to the side so that I can focus on
blockchain itself as a thing you can implement in your ap-
plications. To do that, you need to understand what a block-
chain is and what problems it’s well suited to solve.

As glib as it may sound, it’s nevertheless accurate to say
that a blockchain is a chain of blocks. That necessarily raises
two questions: What are blocks and how are blocks chained?

As Figure 1 illustrates, a block is a data container. A block
includes at least two things:

• Data
• Data Hash

The block data is composed of the following items:

• Business data (order, customer, transaction, or any-
thing else)

• The previous block’s hash. If this is the first block, the
value is null

• A nonce value (random integer)

A block’s validity is determined by calculating the hash and
then comparing that value to the stored hash. If those values
are equal, the block is valid. In a blockchain,
illustrated in Figure 2, a block’s previous hash
value must equal the preceding block’s hash
value. The only exception to the rule is the
first block, or what is often referred to as the
“Genesis block.” The first block’s previous hash
value will always be null. Carrying the previ-
ous hash forward to the next block is how the
blocks are chained together.

http://linkedin.com/in/johnvpetersen
https://github.com/johnvpetersen/BlockChain

60 codemag.comBlockchain: A Practical Application

What Is the Nonce Value, What Is It Used For,
and How Does It Relate to Proof-of-Work?
In cryptography, a nonce value is an arbitrary value that’s
used to generate a hash. In a block, the business data and
previous hash values are fixed. The generated hash value for
those two things will always be the same. What if the gener-
ated hash needs to conform to some specification such as
the hash needing to begin with a set prefix? The only way to
generate a different hash value is to update the nonce value.

A common way to generate nonce values is via a random number
generator. This implies a process that continually loops through
a process that generates a new random number, generates the
hash, and then compares the generated hash value to a required
prefix specification. This process is the proof-of-work concept
that’s also a core concept in the crypto currency context. Proof of
work is the way nodes on a network achieve consensus on wheth-
er a block can be added to the chain. Another phrase you may
have heard of is “block mining.” The more complex the specifica-
tion for the hash, the more computing power you need to find the
first combination of elements that yields a hash that conforms
to the specification so that the block can be added to the chain.

For an internal application, do you need to implement the
proof-of-work concept? The answer is no. Nevertheless, I’ve
implemented the concept here because if there’s at least
some rule for hash complexity and that rule is secret and
embedded in your program, it follows that your program—
and only your program—can create blocks. In such a case, a
block’s provenance is certain, which in turn, enhances the
blockchain’s data trustworthiness. In other words, a rogue
process can’t create or update blocks in a blockchain.

A related concept to proof-of-work is proof-of-stake. With
proof-of-work (PoW), any miner that expends the necessary
effort (including energy consumption) can verify a new block.
Because of the computing resources required, the energy con-
sumption mentioned is just that: electrical power. Miners get
rewards for mining blocks. Those rewards fund the sizeable
electrical bills that are incurred with block mining! Proof-of-

Figure 2: Blocks are chained together by carrying forward a block’s hash
to the next block.

stake (PoS), on the other hand, goes toward how a subset of
miners acquire the right to verify new blocks. This dichotomy
between PoW and PoS is one example that illustrates the open
questions related to crypto currencies.

Blockchain Benefits
Because a block’s data contains the hash for the previous block,
this arrangement has at least two profound ramifications:

• The validity of any one block can be verified. Does the
generated hash == the stored hash? We can easily de-
tect whether a block’s data has been altered since the
hash was generated.

• The validity of the blockchain can be verified. Does a
block’s data contain the hash for the previous block?

You often have the need to quickly verify whether a data
series is “Valid.” Valid, in this context, means that the data
hasn’t been altered since hashes were generated. Altering
any one block in the chain not only invalidates that block, but
it also invalidates every subsequent block and, as a result, the
entire chain is invalidated. If, for a given data set, you were
called upon to prove whether the dataset has changed, how
would you go about handling that task? Is it possible? Would
you need to ping off another data source? If you implement
blockchain, the task is trivial because a blockchain is capable
of expressing whether or not data has been altered since
hashes were generated and it can do so within its bound-
aries without the need for external resources. This can have
profound positive performance ramifications for your applica-
tions! Therefore, in the crypto currency context, blockchain
supports the decentralized digital ledger concept.

Blockchain Use Case:
Read-Only Sequential Data
The world isn’t a nail and blockchain isn’t a hammer! For
blockchain, a good use case appears to be one that involves
read-only sequential data. Think about bank account trans-
actions. Once a transaction has been logged, it should never
be altered. Once an event occurs and has been recorded,
there’s no going back. In other words, there is no Wayback
Machine that allows you to go back in time to change his-
tory. If a correction needs to be made, you simply append
a new transaction to record the correction. Or put another
way, add another block to the chain.

61codemag.com Blockchain: A Practical Application

Overriding the ToString() Virtual Method
For each class, take note of how the ToString() method is
always overridden. In each case, a class can emit itself as
JSON when its ToString() method is invoked. The purpose
is to facilitate serialization and de-serialization. All of the
classes in this solution are immutable once they’ve been in-
stantiated. During its lifetime, a blockchain will move from
active to inactive states. When inactive, the blockchain only
exists as JSON. When active, that JSON string is used to in-
stantiate the blockchain class. In the examples that follow,
you will see how the overridden ToString() method is useful.

IProofOfWork Interface
The solution defines an interface, not an implementation
for proof-of-work. The reason for the interface is that you
don’t know at design time what specific rule will be em-
ployed to define the required prefix for a hash. The following
illustrates this simple interface with one method:

 public interface IProofOfWork {
 string GetPrefix();
 }

Figure 3: The blockchain implementation is very simple in
that it only consists of three classes and one interface.

Figure 4: A block chain is a chain of blocks where each block contains data and the data
hash. The data is an object that contains a nonce, business data, and, if applicable, the
previous block’s hash.

Blockchain applies to any scenario that involves the recorda-
tion of an event. Blocks are always added to the end of the
chain. In the crypto currency world, this gets a bit more com-
plicated because multiple copies of the blockchain exist on
nodes in the network. This is what the distributed digital led-
ger is all about. Synching up the nodes is the job of a network
service like Ethereum. For the purpose of this article and this
use case, you don’t need to be concerned with a third-party
network or the need to synch-up distributed nodes. All you
need to be concerned with is with blockchain itself.

With that background, let’s review some code!

Implementing a Blockchain in .NET Core
You can find the project code in the following GitHub Reposi-
tory: https://github.com/johnvpetersen/BlockChain. To fully
understand the code, I strongly encourage you to run and step
through the tests. Although I used VS Code and .NET Core 3.1,
you can easily offload the code to Visual Studio and leverage
.NET 4.x if you’re more familiar with that environment. The so-
lution, illustrated in Figure 3 is divided between two projects:

• App: hosts the core blockchain classes
• Tests: hosts the test fixtures that exercise the block-

chain classes hosted in the app

As Figure 4 illustrates, a block chain is a simple structure.
The way the blocks are chained is also quite simple. The link
is a block’s hash that’s carried forward to the next block’s
data.

To implement what’s depicted in Figure 4, you’ll rely on the
following objects:

• Data: An object to hold a block’s data. The data struc-
ture includes the nonce, business data, and if appli-
cable, the previous block’s hash.

• Proof of work: An object that uses a specified algo-
rithm to calculate the required prefix for a valid hash.

• Block: An object to host data. The block object is also
responsible for calculating its data hash.

• Chain: An object to host a collection of blocks. The
chain object is responsible for adding a new block to
the collection. Part of that operation includes apply-
ing the previous block’s hash to the new block’s data.

Data Class
Listing 1 illustrates the data class implementation. Because
the class is generic, it can host your custom class. In ad-
dition to your business data, this class also contains the
nonce value and the previous block’s hash. The following
illustrates how to instantiate and verify the data class:

 [Fact]
 public void CanInstantiateData() {
 var sut = new Data<MyData>(
 0,new MyData(10,"Amount is $10.00"));
 Assert.Equal(10,sut.Value.Amount);
 Assert.Equal("Amount is $10.00",
 sut.Value.Message);
 Assert.Equal(0,sut.Nonce);
 Assert.True(
 string.
 IsNullOrEmpty(sut.PreviousHash));
}

62 codemag.com

you need it to be. It’s also worth noting that IProofOfWork
implicates all the SOLID principles:

• S: Single Responsibility: IProofOfWork supports concrete
implementations doing one thing and one thing only.
That one thing is to generate the required hash prefix.

• O: Open-Closed: Because the dependency is on an
abstract contract, the entity relying on the abstract
contract is open for extension. Extending capability is
achieved by way of the concrete class that conforms to
the IProofOfWork Interface.

• L: Liskov Substitution: An entity relying on the
IProofOfWork Interface can work with any implemen-
tation of that interface.

• I: Interface Segregation: In this context, you can al-
ter how a required hash prefix is calculated without
affecting any other aspect of the solution.

• D: Dependency Inversion: In this context, the chain and
block objects depend on the IProofOfWork interface, not
on any specific concrete implementation. At runtime, the
chosen concrete implementation that conforms to the in-
terface can be injected into the chain and block classes.

Block Class
The block class joins the data and proof-of-work concepts. To
review, the block is a data container and is illustrated back
in Figure 1. The block class code is illustrated in Listing 3.
Like the other classes, the block class overrides the ToString()
method such that the ToString() method leverages JSON.NET’s
object serialization capability. The serialized block object, as
is illustrated in Figure 4, corresponds to the block construc-
tor that’s decorated with the JsonConstructor attribute. This is
how you can serialize and de-serialize a block. It’s important to
emphasize that all classes in this solution are immutable. You
need a way to hydrate an object while it’s in an active state.
When inactive and at rest, you need a way to persist state.

JSON serialization and deserialization is how to achieve that
capability and the following test illustrates how to create, se-
rialize, and deserialize a block. The MyData class referenced
in the following test is the business object that hosts the
business data that’s ultimately hosted in the block. The block
class has a private method to compute the data hash. Could
that functionality be offloaded to its own class and then have
the class instance (object) injected into the block? The an-
swer is an unqualified “yes” and would be a worthwhile re-
factoring exercise, one that I’ve left outstanding for you to
undertake if you wish. The same is true for how a block gener-
ates a hash. As built, that specific functionality is burned into
the block class definition. If you want to be able to extend
that functionality, that requires the code to be refactored to
its own class and then you’d rely on dependency injection to
make that functionality available with the block class.

public void
 BlockCanBeSerializedAndDeSerialized () {
 var sut =
 new BlockChain.Block<MyData> (
 new MyData (108, "Amount is 108"),
 null,
 new ProofOfWork ()
);
 var blockJSON = sut.ToString ();
 sut = null;
 sut =
 DeserializeObject<BlockChain.Block<MyData>> (

Listing 2 illustrates the implementation of the IProofOfWork
interface. The class can be instantiated with a set prefix or
with a GUID and an array of integers that specifies which
characters in the GUID to use for the prefix. Note: the lon-
ger the prefix, the longer it will take the generate a hash.
The following test is an example of how to implement the proof
of work class that implements the IProofOfWork interface:

[Fact]
public void CanVerifyPrefixWithParameters () {
 var guid = Guid.NewGuid ();
 int[] charsToTake = { 0, 5, 10 };
 var expected = string.Empty;

 var sut = new ProofOfWork (guid, charsToTake);

 Array.ForEach (charsToTake, element => {
 expected +=
 guid.ToString ().Substring (element, 1);
 });

 Assert.Equal (expected, sut.GetPrefix ());
}

The implementation above is completely arbitrary. The
class’s only purpose is to encapsulate code that generates
a prefix. That code can be as simple or as complicated as

using static Newtonsoft.Json.JsonConvert;

namespace BlockChain {
 public class Data<T> {
 public Data (int nonce, T value, string previousHash = "") {
 Nonce = nonce;
 Value = value;
 PreviousHash = previousHash;
 }
 public int Nonce { get; private set; }
 public T Value { get; private set; }
 public string PreviousHash { get; private set; }

 public override string ToString () {
 return SerializeObject (this);
 }
 }
}

Listing 1: Data Class

public class ProofOfWork: IProofOfWork
{
 private string _prefix;

 [JsonConstructor]
 public ProofOfWork(string prefix) {
 _prefix = prefix;
}

 public ProofOfWork() : this(Guid.NewGuid(),new int[] {0}) {}

 public ProofOfWork(Guid guid, int[] charsToTake) {

 _prefix = string.Empty;
 if (charsToTake == null || charsToTake.Length == 0)
 return;

 Array.ForEach(charsToTake, element => {
 _prefix += guid.ToString().Substring(element,1);
 });
}

 public string GetPrefix() => _prefix;
}

Listing 2: Proof Of Work Class

Blockchain: A Practical Application

63codemag.com

the same hash value is generated and unless the hash
generated conforms to the prefix, you’d never exit the
loop. In this context, much of this operation occurs in
the block’s constructor. In other words, when a block is
created, it necessarily means the block’s hash conforms
to the required prefix if one was specified.

The following is a test that puts everything together. There
are two broad scenarios tested: with a proof of work prefix
requirement and without. The test, under both scenarios:

• Creates a new chain
• Adds three blocks
• Serializes the chain
• Nulls the blocks variable
• Deserializes the chain from JSON
• Adds a fourth block

[Theory]
[InlineData(true)]
[InlineData(false)]
public void
ChainCanBeSerializedAndDeSerialized (
 bool proofOfWork
) {
 var blocks =
 new Chain<MyData> (proofOfWork ?
 new ProofOfWork() : null);
 blocks.AddBlock (
 new MyData (108, "Amount is 108"));
 blocks.AddBlock (
 new MyData (109, "Amount is 109"));
 blocks.AddBlock (
 new MyData (110, "Amount is 110"));

 blockJSON
);

 Assert.True (sut.IsValid ());
}

Chain Class
The chain class code is illustrated in Listing 4. The two pub-
lic members to focus on are the Blocks Property and the
AddBlock() Method:

• Blocks Property: This property is the public version of
the internal blocks dictionary. The System Collections
Immutable NuGet Package is leveraged so that you
can create an immutable version of the internal blocks
dictionary. An external entity needs to read the block
data in the chain. At the same time, the data needs to
be read-only. Although the underlying block objects
and the data it contains is read-only, the outer dic-
tionary is mutable. It isn’t a concern because the vari-
able that holds that mutable dictionary (_blockChain)
is private. The internal dictionary needs to be mutable
because blocks may be added. When you refer to the
Blocks property, a copy of the _blockChain variable is
made. That copy is, however, an immutable dictionary.

• AddBlock() Method: The AddBlock() method is re-
sponsible for taking the block data, taking the block
data and computing a hash, and checking to see if the
computed hash conforms to the prefix if a required pre-
fix applies. That’s why the While loop is in place. The
process continues to leverage the block’s ability to gen-
erate hashes until one is generated that conforms to
the prefix. To achieve that capability, the nonce value
is updated with another random number. If that didn’t
happen and given that the other data doesn’t change,

using System;
using System.Security.Cryptography;
using System.Text;
using Newtonsoft.Json;
using static Newtonsoft.Json.JsonConvert;

namespace BlockChain
{
 public class Block<T> {

 private string _hash = string.Empty;
 private Data<T> _data;
 private string _prefix;

 [JsonConstructor]
 public Block (string hash, Data<T> data,string prefix) {
 _hash = hash;
 _data = data;
 _prefix = prefix;
 }

 public Block (
 T data, string previousHash = "",
 IProofOfWork proofOfWork = null) {
 _prefix =
 proofOfWork == null ?
 string.Empty : proofOfWork.GetPrefix ();
 var rnd = new Random ();
 while (true) {
 var blockData = new Data<T> (rnd.Next (), data, previousHash);
 var result = computeHash(blockData);

 if (string.IsNullOrEmpty (_prefix) ||
 result.Substring (0, _prefix.Length) == _prefix) {
 _hash = result;
 _data = blockData;

 break;
 }
 }
 }
 string computeHash () => computeHash (_data);

 string computeHash(Data<T> data)
 {
 using (var sha256 = SHA256.Create())
 {
 return Convert.ToBase64String(
 sha256
 .ComputeHash(
 Encoding.UTF8.GetBytes(
 SerializeObject(
 data
)
)
)
);
 }
 }
 public override string ToString () {
 return SerializeObject (this);
 }
 public string Hash => _hash;
 public Data<T> Data => _data;
 public bool IsValid () {
 var retVal = true;
 retVal = string.IsNullOrEmpty (_prefix) ? retVal :
 this.Hash.Substring (0, _prefix.Length) == _prefix;

 return retVal && computeHash (_data) == this.Hash;
 }
 }
}

Listing 3: Block Class

Blockchain: A Practical Application

64 codemag.com

stored hashes are identical. In the crypto currency world,
there’s the concept of block mining, which involves signifi-
cant computing power to create a block, Block mining entails
the proof-of-work concept. The way the proof of work concept
is implemented in this article is through the proof of work
class that defines a required prefix. When a block is created
with a proof of work requirement, the process of looping and
determining whether the new hash conforms to the prefix,
which is conceptually the same as block mining in the crypto
currency world. Note: if you require a generated hash to
conform to a prefix length that is greater than or equal to
3, you will likely see significant delays when generating
blocks. It may very well be that in a business application,
there is no need for proof-of-work. That’s why the proof-
of-work was separated to its own interface.

Finally, the chain class ties the blocks together. Like a block
class, the chain class can express its valid state. If any one
block is invalid, the entire chain is also invalid. Being able to
determine at a glance and without having to ping off another
resource like a database whether or not a dataset is valid is a
performance enhancement. Although you can’t prevent data
tampering with 100% success, you can, at the very least, with
blockchain, detect when data has been altered. In my opin-
ion, that ability makes blockchain a powerful approach that
affords your applications benefits that would otherwise be
more difficult to realize. It’s important to note that hashing
as a means to detect data modifications isn’t a new or novel
concept, and neither is blockchain!

 Assert.Equal(3,blocks.Blocks.Count);

 Assert.True (blocks.IsValid ());

 var blockJSON = blocks.ToString ();

 blocks = null;

 blocks =
 DeserializeObject<Chain<MyData>> (
 blockJSON, new ProofOfWorkConverter());

 Assert.True (blocks.IsValid ());
 Assert.Equal(blockJSON, blocks.ToString());

 blocks.AddBlock (
 new MyData (111, "Amount is 111"));

 Assert.Equal(4,blocks.Blocks.Count);
 }
 }

Conclusion
Blockchain, independent of the crypto currency context, is a
simple and powerful concept. A prime use case for blockchain
in a business application is one where there are multiple se-
quentially created records. The blockchain itself can express
whether it’s in a valid state. A valid state is one where the
computed hash equals the newly generated hash for the data.
Assuming nothing changed with the data, the computed and

using System.Collections.Generic;
using System.Collections.Immutable;
using Newtonsoft.Json;
using static Newtonsoft.Json.JsonConvert;
using System.Linq;

namespace BlockChain {

public class Chain<T>
 {

private Dictionary<int, Block<T>> _blockChain =
 new Dictionary<int, Block<T>>();
 private IProofOfWork _proofOfWork = null;
 public ImmutableDictionary<int, Block<T>> Blocks =>
 _blockChain.ToImmutableDictionary();

[JsonConstructor]
public Chain(
 Dictionary<int, Block<T>> blockChain,
 IProofOfWork proofOfWork)
 {
 _proofOfWork = proofOfWork;
 _blockChain = blockChain;
 }

 public Chain(IProofOfWork proofOfWork = null)
 {
 _proofOfWork = proofOfWork;
 }

 public bool? IsValid()
 {
 if (Blocks == null || Blocks.Count == 0)
 return null;
 if (Blocks.Count(x => !x.Value.IsValid()) > 0)
 return false;
 for (int i = 1; i < Blocks.Count; i++)
 {

 if (Blocks[i].Data.PreviousHash != Blocks[i - 1].Hash)
 return false;
 }
 return true;
 }

 public override string ToString()
 {

 var prefix =
 _proofOfWork == null ? string.Empty : _proofOfWork.GetPrefix();

 return SerializeObject(
 new
 {
 BlockChain = _blockChain,
 ProofOfWork = prefix
 }
);
 }

 public void AddBlock(T data)
 {
 var previousHash =
 _blockChain.Count == 0 ?
 null :
 _blockChain[_blockChain.Count - 1].Hash;
 _blockChain.Add(
 _blockChain.Count,
 new Block<T>(
 data,
 previousHash,
 _proofOfWork)
);
 }
 public Block<T> this[int i] => _blockChain[i];
 }
}

Listing 4: Chain Class

 John V. Petersen

Blockchain: A Practical Application

65codemag.com The Complete Guide to Suspense in Vue3

ONLINE QUICK ID 2011091

The Complete Guide to Suspense in Vue3
Suspense is a new feature that will see the light in the long-awaited release of Vue 3. It’s highly inspired by React Suspense
(https://reactjs.org/docs/concurrent-mode-suspense.html). This article will introduce Suspense, showcase the various ways of
using it, show it in action with example app code, and end with ways to handle errors.

Bilal Haidar
bhaidar@gmail.com
https://www.bhaidar.dev
@bhaidar

Bilal Haidar is an
accomplished author,
Microsoft MVP of 10 years,
ASP.NET Insider, and has
been writing for CODE
Magazine since 2007.

With 15 years of extensive
experience in Web develop-
ment, Bilal is an expert in
providing enterprise Web
solutions.

He works at Consolidated
Contractors Company in
Athens, Greece as a full-
stack senior developer.

Bilal offers technical
consultancy for a variety
of technologies including
Nest JS, Angular, Vue JS,
JavaScript and TypeScript.

What’s Suspense in Vue3?
While researching and learning about Suspense, I read many
articles and watched many videos. I had light bulb moments
and moments of confusion. It’s the confusion that com-
pelled me to explain it clearly and with my own examples.

Suspense creates an execution context or a boundary around
the content it wraps. It waits for the component(s) wrapped
inside to be ready before displaying it/them. Meanwhile, it
displays a fallback content that could be a text message,
spinning animation, or any other type of content.

Initially, the Suspense component displays the fallback con-
tent by default. The wrapped component makes use of the
async setup() function and awaits an async/promise opera-
tion to fetch data from a back-end server. The moment the
promise is resolved successfully, the Suspense component
displays the component on the screen.

The Composition API in Vue 3 is implemented via the setup() func-
tion. To learn more about the Composition API, check out my arti-
cle, “Vue 3 Composition API, Do You Really Need It?” (https://labs.
thisdot.co/blog/vue-3-composition-api-do-you-really-need-it).

If, for whatever reason, the async/promise operation fails
or is pending, the Suspense component continues to show
the fallback content. You’ll see this in the coming sections.

Let me illustrate this with a few examples. Let’s assume that
you have a component that’s wrapped inside a Suspense com-

ponent that uses the Composition API in Vue 3 by using the
setup() function.

Async/Promise Operation with Success
In this first scenario, I’m going to execute an async/promise
operation that results in a successful operation. Listing 1
shows the complete source code for this section.

You can play with this example on Suspense with Success
here: https://codesandbox.io/s/suspense-success-rzwx3.

The fetch() function, part of the Fetch API (https://devel-
oper.mozilla.org/en-US/docs/Web/API/Fetch_API), com-
municates with a remote REST API to return COVID-19 data
by country. It returns a Promise.

The fetchData() function simulates a delay by using both a
Promise and the setTimeout() function.

The moment the Promise is resolved and the data is avail-
able, the SampleOne component is ready to be rendered.
At this time, the wrapping Suspense component inside the
App component displays it and hides the fallback content.
Figure 1 shows the app running.

This example demonstrates the safe path. The Suspense
component deals with a successful async/promise operation
with no surprises!

Async/Promise Operation with Unhandled Failure
In this second scenario, I’ll execute an async/promise op-
eration that results in an unhandled failure. To simulate a
Promise rejection, I’ll use an incorrect host name in the re-
quest URL and see how it behaves.

async function fetchData() {
 return new Promise(async (resolve) => {
 const res = await fetch(
 `
 https://disease.sh/v3/covid-19/countries/
 ?yesterday=true&strict=true
 `
);
 setTimeout(async () =>
 resolve(await res.json()), 2000
);
 });
}

Check out this example on Suspense with Unhandled Failure:
https://codesandbox.io/s/suspense-unhandled-failure-26s7e.

The rest of the code is kept the same. Notice the use of
diseases instead of disease.

Needless to say, the request fails and the Promise returned is
rejected. How does the Suspense component deal with this? Figure 1: Async/Promise with Success.

http://twitter.com/bhaidar
https://labs.thisdot.co/blog/vue-3-composition-api-do-you-really-need-it
https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API

66 codemag.comThe Complete Guide to Suspense in Vue3

pense component gets the impression that the wrapped
component has successfully completed its async/promise
fetch operation and it’s ready to be rendered. In this case,
the Suspense component displays the wrapped component
and hides the fallback content. Listing 2 shows the com-
plete source code used in this section.

Access this example on Suspense with Handled Failure here:
https://codesandbox.io/s/suspense-handled-failure-yy181.

The async/promise fetch operation is now wrapped inside
a try/catch block. The rejected Promise inside fetchData()
function is handled and written into the console silently.
Hence, the component is safe to be rendered and no excep-
tion or failure was propagated to the parent component.
Figure 3 shows the app running.

The Suspense component renders the component normally.
However, the data that the REST API should return is not show-
ing due to the failure.

This section was longer than anticipated. I wanted to show
you the possible scenarios that the Suspense component
can have while deciding to render content or fallback con-
tent on the page.

How Suspense Fits into Your App?
An architectural look into how the Suspense in Vue 3 fits in
your app leads me to discuss the various options that are
available while implementing it.

Suspense at the App Level
You can position the Suspense component inside the App.vue
component so it wraps the entire app and controls its render-
ing process. Figure 4 illustrates Suspense at the App level.

The Suspense component wraps the entire app. The app con-
tains Views which, in turn, are composed of Components.

The wrapped component wasn’t able to resolve the async/
promise operation, and the component was never ready to
be displayed on the screen. Therefore, the Suspense com-
ponent keeps the fallback content showing. Figure 2 shows
the app running.

This example demonstrates the use of a Suspense compo-
nent wrapping a component with an async/promise fetch
operation failing without being handled.

Async/Promise Operation with Handled Failure
The third and last scenario is handling the async/promise
request failure inside the wrapped component. The Sus-

Figure 2: Async/Promise Unhandled Failure.

import { createApp, ref } from "./vue.esm-browser";

const SampleOne = {
 name: "Sample One",
 async setup() {
 const data = ref(null);

 data.value = await fetchData();

 return {
 data
 };
 },
 template: `
 <pre>{{ data }}</pre>
 `
};

const App = {
 components: {
 SampleOne
 },
 template: `
 <h1>Vue 3 Suspense</h1>
 <div class="app">
 <h3>Async/Promise with Success</h3>
 <Suspense>
 <template #default>

 <SampleOne />
 </template>
 <template #fallback>
 <div>Loading ...</div>
 </template>
 </Suspense>
 </div>
 `
};

createApp(App).mount("#app");

// Utils

async function fetchData() {
 return new Promise(async (resolve) => {
 const res = await fetch(
 `
 https://disease.sh/v3/covid-19/countries
 /?yesterday=true&strict=true
 `
);
 setTimeout(async () =>
 resolve(await res.json()), 2000
);
 });
}

Listing 1: Async/Promise Operation with Success

67codemag.com The Complete Guide to Suspense in Vue3

Demonstration
Now that you’ve had a full overview on how Suspense works
in Vue 3 and how it’s used in your app, let’s switch gears and
build something useful.

In this section, you’ll build a basic COVID-19 Dashboard. The
Dashboard displays COVID-19 data about each listed country.
The information includes:

• Total cases
• Recovered cases
• Active cases

Suspense at the View Level
Instead of wrapping the entire app inside a Suspense com-
ponent, you just wrap a single View in your app with it.

Therefore, you either wrap a single View or simply wrap the
entire <router-view /> by a Suspense component. By doing
so, it controls every single View in your app. Figure 5 il-
lustrates this.

The Suspense component wraps a View. This View is com-
posed of a set of Components.

Suspense at the Component level
The final option is to let the Suspense component wrap one
or more components inside a View. This option allows you to
control the display of a single component at a time.

This option definitely gives you more control and allows your
app to behave differently among the different Suspense
components that it uses. This comes at the expense of hav-
ing several Suspense components and is more complicated
to manage and maintain. Figure 6 illustrates this.

The Suspense component wraps all the Components inside
a single View. Figure 3: Async/Promise with Handled Failure.

import { createApp, ref } from "./vue.esm-browser";

const SampleThree = {
 name: "Sample Three",
 async setup() {
 const data = ref(null);

 try {
 data.value = await fetchData();
 } catch (e) {
 console.log(e);
 }

 return {
 data
 };
 },
 template: `
 <p style="text-align: center; padding-top: 20px;">
 This component is rendered without any data fetched!
 </p>
 <pre>{{ data }}</pre>
 `
};

const App = {
 components: {
 SampleThree
 },
 template: `
 <h1>Vue 3 Suspense</h1>
 <div class="app">
 <h3>Async/Promise with Success</h3>
 <Suspense>
 <template #default>

 <SampleThree />
 </template>
 <template #fallback>
 <div
 style="text-align: center; padding-top: 20px;">
 Loading please wait ...
 </div>
 </template>
 </Suspense>
 </div>
 `
};

createApp(App).mount("#app");

// Utils

async function fetchData() {
 return new Promise(async (resolve, reject) => {
 try {
 const res = await fetch(
 `
 https://diseases.sh/v3/covid-19/countries/
 ?yesterday=true&strict=true
 `
);
 setTimeout(async () =>
 resolve(await res.json()), 2000
);
 } catch {
 reject("Failed to load data");
 }
 });
}

Listing 2: Async/Promise Operation with Handled Failure

A View in a Vue app can be thought
of as a Page that users can route to.
A View is composed of a set
of components that are usually
not route-aware.

68 codemag.com

For this Dashboard, let’s use the following HTTP GET request:
https://disease.sh/v3/covid-19/countries/?yesterday=true
&strict=true.

The request queries for all the countries having COVID-19. It
retrieves the information from the day before.

To start with, let’s build a function to fetch the data from
the backend.

async function fetchData(
 timeout: number = 2000) {

 return new Promise(
 async (resolve, reject) => {
 try {
 const res = await fetch(`
 https://disease.sh/v3/covid-19/countries
 /?yesterday=true&strict=true`);

 setTimeout(async () => {
 resolve(await res.json());
 }, timeout);

 } catch (err) {
 reject(err);
 }
 });
}

The function uses the Fetch API (https://developer.mozilla.
org/en-US/docs/Web/API/Fetch_API) to send a request to
the REST API. Before returning the results, the function simu-
lates a delay by using the setTimeout() function with a time-
out delay in milliseconds. The default value of the timeout is
two seconds. In addition, a try/catch block wraps around the
fetch() request call in order to handle any errors. This is es-
sential to make sure your Promise can always resolve or reject.

import { computed, ref } from "./vue.esm-browser";

export default {
 name: "CovidByCountry",
 props: {
 timeout: {
 type: Number,
 default: 3000
 }
 },
 async setup(props: any) {
 const data = ref(null);
 data.value = await fetchData(props.timeout);

 return {
 covid: computed(() => {
 return data.value;
 })
 };
 },
 template: `
 <div class="covid">
 <div class="covid-line"
 v-for="record in covid"
 :key="record.countryInfo._id">

 {{ record.country }}

 Cases: {{ record.cases }}
 Recovered: {{ record.recovered }}
 Active: {{ record.active }}

 </div>
 </div>
 `
};

Listing 3: Covid by Country Component

Figure 4: Suspense at the App Level. Figure 5: Suspense at the View Level.

I’m using the https://disease.sh/docs/ website to retrieve
information that will populate my app. This website offers
a modern REST API that can return JSON data to consume
in your app. You can browse their documentation for more
information on how to use their API.

The Complete Guide to Suspense in Vue3

https://disease.sh/v3/covid-19/countries/?yesterday=true&strict=true.
https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API

69codemag.com

fallback template and displays the default template. The
default template gets replaced by the CovidByCountry com-
ponent. Figure 7 shows the app running.

You can play with this example on the COVID-19 Dashboard:
https://codesandbox.io/s/suspense-vue3-4vgle.

Error Handling in Suspense
In this section, I’ll look at how to handle errors that are
thrown while the async setup() function waits for the fetch-
Data() function to execute.

You have two options for handling errors when you’re using
the Suspense component.

• At the parent component level where the Suspense
component lives

• At the child component that the Suspense component
wraps

I’ll look at both options to give you a solid understanding of
how to handle errors with the Suspense component.

There are several ways to simulate a failure in an HTTP re-
quest. I’ll choose the easiest for this demonstration and
mess around with the Host name of the REST API request.
The change affects the fetchData() function at this line:

const res = await fetch(`
 https://diseases.sh/v3/covid-19/countries
 /?yesterday=true&strict=true
 `);

COVID by Country Component
Now let’s build the component that displays the COVID-19
data on the page. Listing 3 shows the complete code of this
component.

The component accepts a single property to specify the
timeout delay before displaying the results. It uses the Com-
position API by using the async setup() function.

Inside the function, it defines a ref variable named data. It
then awaits the fetchData() function. Finally, it returns an
object with a single computed() property named covid that
holds a reference to the data coming back from the server.

The key point here is that the component is awaiting a promise
inside an async setup() function. This is the main requirement
for a component to work inside the Suspense component.

The component defines a basic template to display each
country together with its results.

Add Suspense to the App Component
Let’s switch to the App component and configure the Sus-
pense component inside it. Listing 4 shows the complete
code for this component.

The component uses a Suspense component in its template.
The Suspense component defines two templates: default
and fallback.

The former hosts the CovidByCountry component that you
defined above. The latter defines a message to let the user
know that data is being retrieved from the back-end server
and will be available soon.

The moment the data is retrieved and returned, the setup()
function is resolved. The Suspense component hides the

import { createApp, ref } from "./vue.esm-browser";
import CovidByCountry from "./CovidByCountry";

const App = {
 components: {
 "covid-by-country": CovidByCountry
 },
 setup() {
 const timeout = ref(4000);

 return {
 timeout
 };
 },
 template: `
 <h1>COVID-19 Dashboard</h1>
 <div class="app">
 <h3>Data by Country</h3>
 <Suspense>
 <template #default>
 <covid-by-country :timeout="timeout" />
 </template>
 <template #fallback>
 <div style="padding-top: 20px;">
 Loading please wait ...
 </div>
 </template>
 </Suspense>
 </div>
 `
};

createApp(App).mount("#app");

Listing 4: Add Suspense to the App Component

Figure 6: Suspense at the component level.

The Complete Guide to Suspense in Vue3

70 codemag.com

 data.value = await fetchData(props.timeout);

 return {
 covid: computed(() => {
 return data.value;
 })
 };
 },

The function awaits the fetchData() function without any
try/catch block. If the fetchData() function rejects the
Promise it returns, the setup() function fails, and the error
bubbles up the Vue-Component-Tree.

Vue 3 offers the onErrorCaptured() lifecycle hook. Vue 2 in-
troduced this hook back at version 2.5.0 of the framework.
Vue 3 renames this hook and makes it available inside the
Composition API.

Vue calls the onErrorCaptured() hook when an error from
any descendent component is captured.

This hook perfectly fits the scenario here. Let’s use it inside
the App component (the component that hosts the Sus-
pense component).

Let’s modify the setup() function inside the App component
to look like this:

setup() {
 ...
 const error = ref(null);

 onErrorCaptured(
 (e: Error) => (error.value = e)
);

 return {
 error,
 ...
 };
 },

The onErrorCaptured() function receives three arguments:
the error, the component instance that triggered the error,
and a string containing information on where the error was
captured. The hook can return false to stop the error from
propagating further.

The hook assigns the error to a local ref variable named
error.

Let’s switch to the template and modify it a little in order to
display the errors.

template: `
 <h1>COVID-19 Dashboard</h1>
 <div class="app">
 <h3>Data by Country</h3>
 <div class="space-up error" v-if="error">
 {{ error }}
 </div>
 <Suspense v-else>
 ...
 </Suspense>

The request now uses diseases.sh instead of disease.sh.

The line above fails and throws an exception. The try/catch
block handles the exception and rejects the Promise.

Option 1: Handle Errors at the Parent Component
Before I jump in and implement the solution, let me remind
you of how the setup() function looks inside the CovidBy-
Country component.

async setup(props: any) {
 const data = ref(null);

Figure 7: Preloading and loading of COVID-19 data.

Figure 8: Handle errors at the parent component.

The Complete Guide to Suspense in Vue3

71codemag.com

Vue 3 Docs

The Vue team provides
and maintains a detailed
documentation on the
framework that you may
always use as a reference:
https://v3.vuejs.org/guide/
introduction.html

Figure 9 shows the app running.

You can play with this example on Handling Errors at the
Child Component here: https://codesandbox.io/s/suspense-
handle-errors-child-vue3-civvr.

Bonus: Custom Suspense
Component with Error Handling
I’ve included this section to clean up the way I handle errors
with the new Suspense component.

By default, the Suspense function can either display the
default template or the fallback template. It leaves out
handling errors and lets the developer do it their own
way.

In this section, I’ll propose a rather opinionated approach
on how to extend the Suspense component to offer a third
template: the error template.

My approach can be summarized in three important points:

• Wrap the Suspense component inside a parent com-
ponent.

• Handle the onErrorCaptured() inside the parent com-
ponent.

• Use Vue Slots to render the default, fallback, and error
templates.

To learn more about the Vue Slots, check out my article:
Content Distribution in Vue JS (https://labs.thisdot.co/
blog/content-distribution-in-vue-js).

Wrap the Suspense Component
Let’s wrap the Suspense component inside a new compo-
nent named SuspenseWithErrors.

export default {
 name: "SuspenseWithErrors",
 template: `
 <Suspense>

 </div>
 `

When there’s an error, the component hides the Suspense com-
ponent and instead shows the error message. Otherwise, it
shows the Suspense component when there is no error message.

Figure 8 shows the app running.

That’s it!

Toy with this example on Handling Errors at the Parent Com-
ponent here: https://codesandbox.io/s/suspense-handle-
errors-vue3-z8ghx.

Now let’s see how you can handle errors at the child compo-
nent without touching the parent component.

Option 2: Handle Errors at the Child Component
To implement this option is much simpler. All you need to
do is wrap the call to the fetchData() function with a try/
catch block. Inside the catch(), assign the error to a local
ref variable named errors.

async setup(props: any) {
 ...
 const error = ref(null);

 try {
 data.value =
 await fetchData(props.timeout);
 } catch (err) {
 error.value = err;
 }

 return {
 ...
 error
 };
 },

When you safely handle any errors at the child component
level, the async setup() function resolves successfully. Hence,
the Suspense component that hosts this child component dis-
plays the default template—the CovidByCountry component—
and hides the fallback content. You are, more or less, tricking
the Suspense component into believing all is well. In fact,
when you handle the HTTP request calls properly, things are
fine even though the data cannot be retrieved!

Let’s have a look at the template now:

<div class="space-up error center" v-if="error">
 {{ error }}
</div>
<div v-else class="covid">
 <div class="covid-line"
 v-for="record in covid"
 :key="record.countryInfo._id">
 ...
 </div>
</div>

The error message is shown when there’s an error. Other-
wise, the template displays the list of all countries with CO-
VID-19 data.

Figure 9: Handle errors at the child component.

The Complete Guide to Suspense in Vue3

https://codesandbox.io/s/suspense-handle-errors-vue3-z8ghx
https://codesandbox.io/s/suspense-handle-errors-child-vue3-civvr
https://v3.vuejs.org/guide/introduction.html

72 codemag.com

COVID-19 API

If you’re interested in learning
more about the COVID-19
API used in this article, feel
free to check it at [Disease.sh]
(https://disease.sh/).

 <template #default>
 </template>
 <template #fallback>
 </template>
 </Suspense>
 `
};

Handle the onErrorCaptured() Hook
Now let’s handle the onErrorCaptured() hook inside this new
component.

setup() {
 const error = ref(null);

 onErrorCaptured(
 (err: Error) => (error.value = err)
);

 return {
 error
 };
 },

Add the Vue Slots
Finally, let’s use the Vue Slots to cater for the three templates:

<slot
 name="error"
 :error="error"
 v-if="error"
/>
<Suspense v-else>
 <template #default>
 <slot name="default" />
 </template>
 <template #fallback>
 <slot name="fallback" />
 </template>
</Suspense>

If there’s an error, the Slot named error is displayed. Other-
wise, the Suspense component is displayed. I’m introducing
two new slots for the default and fallback content. This ap-
proach makes the component more flexible.

Note how I’m binding an error property on the error slot to
the actual value of the error. Vue calls this Scoped Slots.
This way, the component consuming the SuspenseWithEr-
rors component can directly access the error message.

Let’s see this component in action!

Using the SuspenseWithErrors Component
First of all, make sure the CovidByCountry component isn’t
handling any errors as follows:

async setup(props: any) {
 ...
 data.value =
 await fetchData(props.timeout);
 ...
},

Second, make sure the App component that’s hosting the
Suspense component isn’t handling any errors.

At the App component level, import the new component
named SuspenseWithErrors.

...
import
 SuspenseWithErrors
from
 "./SuspenseWithErrors";

const App = {
 components: {
 ...
 SuspenseWithErrors
 },

Now let’s change the template of the App component to use
this new one. Listing 5 shows the complete code of this
template.

Figure 10: SuspenseWithErrors in action.

template: `
...
<SuspenseWithErrors>
 <template #error="props">
 <p class="center error space-up">
 {{ props.error }}
 </p>
 </template>
 <template #default>
 <covid-by-country :timeout="timeout" />
 </template>
 <template #fallback>
 <div class="space-up">
 Loading please wait ...
 </div>
 </template>
 </Suspense>
</div>
`

Listing 5: Using the SuspenseWithErrors Component

The Complete Guide to Suspense in Vue3

73codemag.com

 v

Nov/Dec 2020
Volume 21 Issue 6

Group Publisher
Markus Egger

Associate Publisher
Rick Strahl

Editor-in-Chief
Rod Paddock

Managing Editor
Ellen Whitney

Content Editor
Melanie Spiller

Editorial Contributors
Otto Dobretsberger
Jim Duffy
Jeff Etter
Mike Yeager

Writers In This Issue
Bilal Haidar Wei-Meng Lee
Sahil Malik Paul Sheriff
Rick Strahl John V. Petersen
Shawn Wildermuth

Technical Reviewers
Markus Egger
Rod Paddock

Production
Franz Wimmer
King Laurin GmbH
39057 St. Michael/Eppan, Italy

Printing
Fry Communications, Inc.
800 West Church Rd.
Mechanicsburg, PA 17055

Advertising Sales
Tammy Ferguson
832-717-4445 ext 26
tammy@codemag.com

Circulation & Distribution
General Circulation: EPS Software Corp.
Newsstand: The NEWS Group (TNG)
 Media Solutions

Subscriptions
Subscription Manager
Colleen Cade
ccade@codemag.com

US subscriptions are US $29.99 for one year. Subscriptions
outside the US are US $49.99. Payments should be made
in US dollars drawn on a US bank. American Express,
MasterCard, Visa, and Discover credit cards accepted.
Bill me option is available only for US subscriptions.
Back issues are available. For subscription information,
e-mail subscriptions@codemag.com.

Subscribe online at
www.codemag.com

CODE Developer Magazine
6605 Cypresswood Drive, Ste 425, Spring, Texas 77379
Phone: 832-717-4445

CODE COMPILERS

CODA: What Makes a Leader: An Objective Analysis

(Continued from 74)

person for a job. Winston Churchill was a prime
example of that. The slippery slope is when the
leader lets their duty to others become subordi-
nated to their notion of self-importance. Gener-
ally, a good leader is aware.

Aware: Knowledge or Perception
of a Situation or Fact
Leaders know the facts and they act on the facts.
Perhaps more importantly, they communicate the
facts. In furtherance of their duty, a leader sees
to it that those facts are communicated to the
people on whose behalf they act.

Empathy: The Ability to Understand and
Share the Experiences and Feelings of Another
There’s a saying that hypocrisy has a way of re-
vealing itself when the shoe is on the other
foot. Leaders take the time to understand other
points of view. Empathy doesn’t mean there must
be agreement. Understanding is about having a
sense of why others think and feel as they do.

Assessing Leadership
Is the person being evaluated a leader? Don’t
confuse leadership with their official position.
Often, those two things coincide, and all too
often, they don’t. Leadership can be objectively
assessed. It’s important to note that words like
“perfection” don’t apply. Nobody is perfect. No-
body is correct on 100% of things 100% of the
time.

Another word that I don’t think applies is “in-
spire.” What makes somebody a leader is what
they do on matters they have control over. In-
spiration is about how others feel. Leaders don’t
have control over how others feel or how they’re
motivated. Leadership enables—but that’s a dif-

 John V. Petersen

ferent concept. How you feel and how you’re mo-
tivated, that’s up to you. That’s all about leading
yourself. In this regard, there are definite bound-
aries between the objective and the subjective
evaluation of leadership. Make no mistake that
on an objective basis, without getting into spe-
cific idiosyncratic behavior and personalities, you
can objectively ascertain whether the leadership
label applies by squaring observable fact to de-
fined terms. A person’s actions either comply
with the definition or it doesn’t. There is no in-
between.

Notice how the SuspenseWithErrors component now
supports three templates: error, default, and fallback.

In addition, note how the Error template accesses
its Error property, that the SuspenseWithErrors
component binds on it by binding the name of
the slot to the Props property. The Props object
holds any property bound to this slot. You access
the Error property by using props.error.

Figure 10 shows the app running.

You can play with this example on Suspense With Er-
rors here: https://codesandbox.io/s/suspense-with-
errors-wrapper-bijok.

Conclusion
Let’s be honest here, for every Vue app I’ve devel-
oped, I’ve had to always include a Vue component

with boilerplate logic to show or hide the main
component once its data is loaded and ready for
display on the page.

In this case, Vue 3 Suspense eliminates it. The API
is pretty good, straightforward and easy to use.

Still, I believe this new feature comes with its own
“side-effects.” The major one is deciding where in
your app to use the <Suspense /> component. In
other words, deciding on the level of isolation is
the real challenge.

In future articles, I look forward to discussing
the challenges that arise and sharing solutions
with you as I come across them. Until then, happy
coding.

 Bilal Haidar

https://codesandbox.io/s/suspense-with-errors-wrapper-bijok

codemag.com

or she acts on behalf can be guided in a correct
direction, there can’t be an adversarial relation-
ship between the leader and the people being
led. Leaders respond; they don’t react.

So far, nothing speaks to knowledge and skill.
But there’s a fundamental threshold issue to ad-
dress, it’s whether a person is capable of being a
leader. This is over and above the technical quali-
ties required for the task at hand.

Competence: Having the Necessary Ability,
Knowledge, or Skill to Do Something
Successfully
Somebody can be physically at the top of some or-
ganizational structure by virtue of some other pro-
cess. Do they occupy the position held solely be-
cause of merit? Or are politics involved? The person
may be expert at the tasks accomplished by the
team, and yet totally incompetent insofar as being
a leader is concerned. In management, this is the
Peter Principle where people tend to rise to their
level of incompetence. There’s also the notion that
past success isn’t a guarantee of future success.

Of course, no one person is an expert in all
things. A leader defers to others who know more
about an issue.

Deference: Humble Submission and Respect
Deference is about knowing what one doesn’t
know and acknowledging that fact so that the per-
son who’s responsible for achieving some objective
can fulfill that duty. Often, leading means stepping
back to let others take the reins on a particular is-
sue. A hallmark of recognized great leaders is that
they don’t ever seek to portray the myth that they
are the smartest person in the room on all topics.

This is often referred to as leading from behind
and servant leadership. A leader understands
that their role can often be one of support and
to do the blocking and tackling in order for oth-
ers to be able to do their jobs. This is where ego
becomes an issue. Ego is about a person’s self-
esteem or self-importance.

All leaders have egos. They believe they can do
the job and they often believe they are the best

definitions that exist separate and distinct from
the facts. If such definitions exist, from there, we
can apply those definitions to the facts to formu-
late a conclusion.

The definitions offered herein are not subject to
debate as they’re straight out of the dictionary.
As for whether the qualities I’m outlining here
are hallmarks of leadership, that might require
subjective evaluation. Then again, if we look at
recognized leaders in history, what qualities do
they tend to possess? If someone doesn’t possess
the qualities discussed herein, are they more or
less likely to be truly regarded as leaders?

What are the qualities of leadership?

Defining the Words
A good place to start is with the word “lead” itself.

Lead: To be a route or means
of access to a particular
place or a in a particular
direction. To be in charge
of or in command of.

The concept of leadership is about one person
acting on behalf of one or more other people.
Leadership is also about going in some direction
to achieve some objective. That implies that lead-
ership is about moving in what could be judged to
be the correct direction so that the correct objec-
tive can be achieved.

One approach in describing what something is
can be to provide an example of what it’s not.

Mislead: To cause (someone)
to have a wrong idea
or impression about
someone or something.

Two additional words that come to mind are Ac-
countable and Responsible:

• Accountable: Required or expected to jus-
tify actions or decision; responsible

• Responsible: Having an obligation to do
something, or having control over or care
for someone, as part of one’s job or role

The implication of being accountable and respon-
sible is that there is some duty.

Duty: A Moral or Legal Obligation;
Responsibility
Because the context is about acting on the behalf
of others, going in a chosen direction to achieve
an objective, a leader must show some regard
for the future. When acting on behalf of others,
duty is all about the best interest of others. Lead-
ers avoid conflict of interest from subordinating
other interests to their own self-interests, with
respect to the future.

Prudent: Acting with or Showing Care and
Thought for the Future
Duty and prudence imply that a leader is a fiduciary,
which is a relationship that has trust as its corner-
stone. When a leader advocates a point of view, we
know instinctively whether they believe what they
say. It also implies how decisions get made.

Equitable: Fair and Impartial
Fair: Decisions are made based on facts, and al-
ways in the best interest of whomever is to be
served regardless of whether it is in the best in-
terest of the person tasked with making the de-
cision. That, however, is not enough. Impartial:
Such decision must be unbiased and not in favor
of a specific individual or group of individuals.

Communication is always key. To act on behalf of
others requires sound communication.

Respond: Act or Behave in Reaction to
Someone or Something
How do good leaders respond? Like leading vs.
misleading, it’s good to flip the problem on its
ear and review from the opposite perspective.

React: Responding with hostility. If a leader is to
engender trust such that the people for whom he (Continued on page 73)

CODA: What Makes a Leader: An Objective Analysis74

What Makes a Leader:
An Objective Analysis
As a lawyer and a software engineer, I endeavor to base assessments on facts and empirical evidence.
In times of crisis, leadership at all levels is scrutinized. Can leadership be objectively assessed? Or is
leadership something that can only be subjectively assessed? That question turns on whether there are

CODA

Sign up today for a free trial subscription at www.codemag.com/subscribe/DNC3SPECIAL

codemag.com/magazine
832-717-4445 ext. 8 • info@codemag.com

KNOWLEDGE
IS POWER!

www.codemag.com/magazine
mailto:info@codemag.com

JOB: CDK-037-020

CLIENT: CDK-Fortellis

MEDIA TYPE: Magazine

PUB: Code Magazine

ISSUE: October 2020

AS: Caroline Veazie

AD: None

CW: None

PP: Carrie Seanor

SA: Dave Merriman

NAME: CDK-037-020_Fortellis_Oct_Developers_Print_

R2.indd

ROUND: 2

LAST SAVED: 10-6-2020 6:03 PM

PATH: Hootenanny Media 47:Studio:Wor...ellis_Oct_De-

velopers_Print_R2.indd

PRINTED AT: None

BLEED: 8.75" x 11.25"

TRIM: 8.375" x 10.875"

LIVE: 7.75" x 10.25"

NOTES: PRINT

AD

CW

AS

PP

SA

FONTS: Minion Pro (Regular), Raleway (Medium, ExtraBold)

IMAGES: 5.Developer.jpg (CMYK; 931 ppi; 32.22%), 5.Developer.psd (Gray;

931 ppi; 32.22%), Fortellis_Logo_4Color.eps (56.7%)

INKS: Cyan, Magenta, Yellow, Black

2020 Fortellis is a registered trademark of CDK Global, LLC. 20-1526

HERE ARE
750 BILLION REASONS

WHY DEVS SHOULD
READ THIS AD.

On the Fortellis platform, APIs can be securely published, conveniently

administered and consumed at scale by a continually expanding universe

of developers, dealers and manufacturers. You and your APIs and apps will

be connected to an industry with a voracious appetite for them, and we’ll

even handle the integrations and go-to-market strategy.

Aren’t you glad you kept reading? Read more at Fortellis.io.

Presenting Fortellis, the open-exchange marketplace
serving the $750-billion auto industry.

OUR PLATFORM:

S:7.75"
S:10.25"

T:8.375"
T:10.875"

B:8.75"
B:11.25"

https://www2.fortellis.io/l/149371/2020-10-07/565cs6

